Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight

被引:3
作者
Conway, Thomas Oliver [1 ]
Deift, Percy [1 ]
机构
[1] New York Univ, Courant Inst Math Sci, Dept Math, 251 Mercer Str, New York, NY 10012 USA
关键词
orthogonal polynomials; Riemann-Hilbert problems; recurrence coefficients; steepest descent method; CURVES;
D O I
10.3842/SIGMA.2018.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log 2k/1-x dx on (-1, 1), k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent methods, but not in the standard way as there is no known parametrix for the Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at x = 1.
引用
收藏
页数:66
相关论文
共 18 条
[1]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[2]  
[Anonymous], 1981, OPERATOR THEORY ADV
[3]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[4]  
[Anonymous], 1952, COMM SEM MATH U LUND
[5]  
Breuer J., ARXIV160801467
[7]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[8]   CHORD-ARC CURVES AND GENERALIZED HARDY-SPACES [J].
DAVID, G .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :227-239
[9]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO
[10]  
2-R