Investigation of 6-armchair graphene nanoribbon tunnel FETs

被引:7
作者
Aghanejad Ahmadchally, Alireza [1 ]
Gholipour, Morteza [1 ]
机构
[1] Babol Noshirvani Univ Technol, Fac Elect & Comp Engn, Babol 4714871167, Iran
关键词
Armchair graphene nanoribbon (AGNR); Band-to-band tunneling (BTBT); Tunnel FET (TFET);
D O I
10.1007/s10825-021-01709-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simulation-based study of an n-type six-dimer-line armchair graphene nanoribbon (6-AGNR) tunnel field-effect transistor with asymmetric reservoir doping density is carried out. Tunnel field-effect transistor (TFET) structures are proposed based on a detailed investigation of the device behavior for different applied voltages, channel lengths, temperatures, insulator thicknesses, dielectric constants, and source impurity molar fractions. By suppressing the tunneling transmission in the off-state, the channel length of the device using HfO2 can be scaled down to 5 nm without increasing the leakage current. When using a supply voltage of 0.4 V, the I-ON/I-OFF ratio reaches a high value of 3.6 x 10(10) for the device with a 5-nm channel. Besides, a subthreshold swing (SS) of 3.8 mV/dec is measured for the same GNR-TFET. The high-performance 10-nm-channel device, when supplied with 0.6 V, exhibits a boosted I-ON value of up to 4.3 x 10(3) mu A/mu m, with SS, g(m), and D-ini values of 28 mV/dec, 11 mu S, and 11 fs, respectively. Nevertheless, conventional GNR-TFETs with various channel lengths exhibit rather outstanding characteristics. Such 6-AGNR TFETs display promising functionality for application in future digital and analog integrated circuits.
引用
收藏
页码:1114 / 1124
页数:11
相关论文
共 35 条
[1]  
[Anonymous], 2009, PROC 13 INT WORKSHOP
[2]   Toward Nanowire Electronics [J].
Appenzeller, Joerg ;
Knoch, Joachim ;
Bjoerk, Mikael I. ;
Riel, Heike ;
Schmid, Heinz ;
Riess, Walter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) :2827-2845
[3]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[4]  
Chilstedt S., 2010, Transistors: Types, Materials and Applications, Chapter: Carbon nanomaterials transistors and circuits
[5]   Device Physics and Characteristics of Graphene Nanoribbon Tunneling FETs [J].
Chin, Sai-Kong ;
Seah, Dawei ;
Lam, Kai-Tak ;
Samudra, Ganesh S. ;
Liang, Gengchiau .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) :3144-3152
[6]   Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs [J].
Conzatti, F. ;
Pala, M. G. ;
Esseni, D. ;
Bano, E. ;
Selmi, L. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) :2085-2092
[7]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[8]   A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe ;
Klimeck, Gerhard .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) :1782-1788
[9]   Analytical SPICE-Compatible Model of Schottky-Barrier-Type GNRFETs With Performance Analysis [J].
Gholipour, Morteza ;
Chen, Ying-Yu ;
Sangai, Amit ;
Masoumi, Nasser ;
Chen, Deming .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2016, 24 (02) :650-663
[10]   Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs [J].
Grassi, Roberto ;
Poli, Stefano ;
Gnani, Elena ;
Gnudi, Antonio ;
Reggiani, Susanna ;
Baccarani, Giorgio .
SOLID-STATE ELECTRONICS, 2009, 53 (04) :462-467