COEFFICIENT CONDITIONS FOR HARMONIC UNIVALENT MAPPINGS AND HYPERGEOMETRIC MAPPINGS

被引:19
作者
Bharanedhar, S. V. [1 ]
Ponnusamy, S. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Indian Stat Inst, Chennai Ctr, SETS, Madras 600113, Tamil Nadu, India
关键词
Harmonic; univalent; close-to-convex; starlike and convex mappings; coefficient estimates; Gaussian hypergeometric functions; Hadamard product (convolution);
D O I
10.1216/RMJ-2014-44-3-753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain coefficient criteria for a normalized harmonic function defined in the unit disk to be close-to-convex and fully starlike, respectively. Using these coefficient conditions, we present different classes of harmonic close-to-convex (respectively, fully starlike) functions involving Gaussian hypergeometric functions. In addition, we present a convolution characterization for a class of univalent harmonic functions discussed recently by Mocanu, and later by Bshouty and Lyzzaik in 2010. Our approach provides examples of harmonic polynomials that are close-to-convex and starlike, respectively.
引用
收藏
页码:753 / 777
页数:25
相关论文
共 20 条
[1]  
Abu-Muhanna Y., PREPRINT
[2]   Convolutions for special classes of harmonic univalent functions [J].
Ahuja, OP ;
Jahangiri, JM ;
Silverman, H .
APPLIED MATHEMATICS LETTERS, 2003, 16 (06) :905-909
[3]  
Anderson GD, 1997, CONFORMAL INVARINANT
[4]  
[Anonymous], ANAL NUMER THEOR APP
[5]   Close-to-Convexity Criteria for Planar Harmonic Mappings [J].
Bshouty, D. ;
Lyzzaik, A. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2011, 5 (03) :767-774
[6]  
Bshouty D., 2005, HDB COMPLEX ANAL GEO, V2
[7]  
Chuaqui M., 2004, Comput. Methods Funct. Theory, V4, P127, DOI [10.1007/BF03321060, DOI 10.1007/BF03321060]
[8]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[9]  
Duren P., 2004, CAMBR TRACTS MATH, V156
[10]  
Jahangiri J.M., 2001, COMPLEX VARIABLES TH, V45, P319