On Performance Improvement of Vertex component analysis based endmember extraction from hyperspectral imagery

被引:0
作者
Du, Qian [1 ]
Raksuntorn, Nareenart [2 ]
Younan, Nicolas H. [1 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[2] Suan Sunandha Rajabhat Univ, Fac Ind Technol, Khet Dusit, Thailand
来源
SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X | 2014年 / 9124卷
关键词
Linear mixture analysis; endmember extraction; vertex component analysis; hyperspectral imagery; ALGORITHM;
D O I
10.1117/12.2050701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral mixture analysis is one of the major techniques in hyperspectral remote sensing image analysis. Endmember extraction for spectral mixture analysis is a necessary step when endmember information is unknown. If endmembers are assumed to be pure pixels present in an image scene, endmember extraction is to search the most distinct pixels. Popular algorithms using the criteria of simplex volume maximization (e. g., N-FINDR) and spectral signature similarity (e. g., Vertex Component Analysis) belong to this type. N-FINDR is a parallel-searching method, where all the endmembers are determined simultaneously. VCA is a sequential-searching method, finding endmembers one after another, which can greatly save computational cost. In this paper, we focus on VCA-based endmember extraction. In particular, we propose a new searching approach that makes the extracted endmembers more distinct. Real data experiments show that it can improve the quality of extracted endmembers.
引用
收藏
页数:6
相关论文
共 9 条
[1]  
Chang C.-I., 2007, HYPERSPECTRAL IMAGIN
[2]   A new growing method for simplex-based endmember extraction algorithm [J].
Chang, Chein-I ;
Wu, Chao-Cheng ;
Liu, Wei-min ;
Ouyang, Yen-Chieh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2804-2819
[3]   End-member extraction for hyperspectral image analysis [J].
Du, Qian ;
Raksuntorn, Nareenart ;
Younan, Nicolas H. ;
King, Roger L. .
APPLIED OPTICS, 2008, 47 (28) :F77-F84
[4]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[5]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910
[6]  
Neville R., 1999, Proc. 21st Canadian Symp. Remote Sens, P21
[7]   Automatic spectral target recognition in hyperspectral imagery [J].
Ren, H ;
Chang, CI .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (04) :1232-1249
[8]   A new endmember extraction algorithm based on orthogonal bases of subspace formed by endmembers [J].
Tao, Xuetao ;
Wang, Bin ;
Zhang, Liming ;
Zhang, Jian Qiu .
IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, :2006-2009
[9]   N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data [J].
Winter, ME .
IMAGING SPECTROMETRY V, 1999, 3753 :266-275