G2 and hypergeometric sheaves

被引:12
|
作者
Katz, Nicholas M. [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
monodromy; finite fields; exceptional groups;
D O I
10.1016/j.ffa.2006.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine, in every finite characteristic p, those hypergeomettic sheaves of type (7, m) with 7 >= m whose geometric monodromy group G(geom) lies in G(2), cf. Theorems 3.1 and 6.1. For each of these we determine Ggeom exactly, cf. Theorem 9.1. Each of the five primitive irreducible finite subgroups of G,), namely L-2(8), U-3(3), U-3(3).2 = G(2)(2), L-2(7).2 = PGL(2)(7), L-2(13) turns out to occur as G(geom) in a single characteristic p, namely p = 2, 3, 7, 7, 13 for the groups as listed, and for essentially just one hypergeometric sheaf in that characteristic. It would be interesting to find conceptual, rather than classificational/computational, proofs of these results. (c) 2006 Elsevier Inc. All tights reserved.
引用
收藏
页码:175 / 223
页数:49
相关论文
共 50 条
  • [41] Generalised G2–Manifolds
    Frederik Witt
    Communications in Mathematical Physics, 2006, 265 : 275 - 303
  • [42] A doubling integral for G2
    David Ginzburg
    Joseph Hundley
    Israel Journal of Mathematics, 2015, 207 : 835 - 879
  • [43] The g2 Structure Function
    Slifer, K.
    SPIN PHYSICS, 2009, 1149 : 130 - 139
  • [44] New version of G2
    不详
    EXPERT SYSTEMS, 1997, 14 (03) : 156 - 156
  • [45] STRUCTURE OF G2 MULTIPLETS
    MANDELTS.VB
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1965, 1 (06): : 787 - &
  • [46] BOSONS A PARITY AND G2
    BEHRENDS, RE
    LANDOVITZ, LF
    TUNKELANG, B
    PHYSICAL REVIEW, 1966, 142 (04): : 1092 - +
  • [49] The topological G2 string
    de Boer, Jan
    Naqvi, Asad
    Shomer, Assaf
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 12 (02) : 243 - 318
  • [50] Rational G2 splines
    Karciauskas, Kestutis
    Peters, Joerg
    GRAPHICAL MODELS, 2011, 73 : 286 - 295