Safety properties of liquid state soft pack high power batteries with carbon-coated LiFePO4/graphite electrodes

被引:15
作者
He, Yan-Bing [1 ]
Ling, Guo-Wei [1 ]
Tang, Zhi-Yuan [1 ]
Song, Quan-Sheng [1 ]
Yang, Quan-Hong [1 ]
Chen, Wu [2 ]
Lv, Wei [1 ]
Su, Yan-Jun [2 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Dept Appl Chem, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] McNair Technol Co Ltd, Dongguan 523700, Guangdong, Peoples R China
关键词
Carbon-coated LiFePO(4); High power batteries; Safety performance; Overcharge; Short current; Overdischarge; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; CATHODE MATERIALS; LIFEPO4; CELLS; OVERCHARGE; COMPOSITE; NANOPARTICLES; BEHAVIOR;
D O I
10.1007/s10008-009-0849-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The carbon-coated LiFePO(4) materials were synthesized, and their structure and morphology were characterized by X-ray diffraction and transmission electron microscopy. The safety and heating mechanism of the 066094-type liquid state soft pack high power batteries with carbon-coated LiFePO(4)/graphite electrodes under abusive conditions, such as overcharge, overdischarge, and short current were extensively investigated. It was found that the increase in the temperature of the LiFePO(4)/graphite high power batteries during overcharge was attributed to the reaction of the electrolyte decomposition and the Joule heat. The batteries were heated rapidly by the irreversible heat generated from the current passing through the electrodes during short current. The temperature rise of the batteries which were overdischarged to 0 V was mainly due to the Joule heat. The overdischarge at 1 C/0 V almost did not influence the cycling performance of the batteries. The batteries did not fire, smoke, and explode under the above-mentioned abusive conditions. Therefore, the 066094-type liquid state soft film pack high power batteries with carbon-coated LiFePO(4)/graphite electrodes showed excellent safety performance.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 28 条
[1]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[2]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[3]   Thermal stability of LixCoO2 cathode for lithium ion battery [J].
Baba, Y ;
Okada, S ;
Yamaki, J .
SOLID STATE IONICS, 2002, 148 (3-4) :311-316
[4]   MW-assisted synthesis of LiFePO4 for high power applications [J].
Beninati, Sabina ;
Damen, Libero ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2008, 180 (02) :875-879
[5]   Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method [J].
Gao, Fei ;
Tang, Zhiyuan ;
Xue, Hanjun .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1939-1944
[6]   Overcharge studies of carbon fiber composite-based lithium-ion cells [J].
Hossain, S. ;
Kim, Y-K. ;
Saleh, Y. ;
Loutfy, R. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :640-647
[7]  
JI Y, 2003, J POWER SOURCES, V119, P121
[8]  
JI Y, 2002, SOLID STATE IONICS, V148, P241
[9]   ARC studies of the thermal stability of three different cathode materials:: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes [J].
Jiang, J ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (01) :39-43
[10]   Effects of solvents and salts on the thermal stability of LiC6 [J].
Jiang, JW ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4599-4604