We give several new constructions for moderate rank elliptic curves over Q(T). In particular we construct infinitely many rational elliptic surfaces (not in Weierstrass form) of rank 6 over Q using polynomials of degree two in T. While our method generates linearly independent points, we are able to show the rank is exactly 6 without having to verify the points are independent. The method generalizes; however, the higher rank surfaces are not rational, and we need to check that the constructed points are linearly independent. (c) 2006 Elsevier Inc. All rights reserved.
机构:
Univ Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, CroatiaUniv Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
Dujella, Andrej
Mikic, Miljan
论文数: 0引用数: 0
h-index: 0
机构:
Kumiciceva 20, Rijeka 51000, CroatiaUniv Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
Mikic, Miljan
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI,
2020,
24
(542):
: 29
-
37
机构:
Ulsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan 44919, South KoreaUlsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan 44919, South Korea
机构:
Univ Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, CroatiaUniv Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, Croatia
Dujella, Andrej
Carlos Peral, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Basque Country, Dept Matemat, Aptdo 644, Bilbao 48080, SpainUniv Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, Croatia