The strong chromatic index of sparse graphs

被引:12
|
作者
Debski, Michal [1 ]
Grytczuk, Jaroslaw [2 ,3 ]
Sleszynska-Nowak, Malgorzata [3 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
[3] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
关键词
Combinatorial problems; Strong edge-coloring; Strong chromatic index; Sparse graphs;
D O I
10.1016/j.ipl.2014.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A coloring of the edges of a graph G is strong if each color class is an induced matching of G. The strong chromatic index of G, denoted by chi'(s)(G), is the least possible number of colors in a strong edge coloring of G. In this note, we prove that chi'(s)(G) <= (4k - 1)Delta(G) - k(2k + 1) + 1 for every k-degenerate graph G. This confirms the strong version of a conjecture stated recently by Chang and Narayanan [4]. Our approach also allows to improve the upper bound from [4] for chordless graphs. We get that chi'(s)(G) <= 4 Delta - 3 for any chordless graph G. Both bounds remain valid for the list version of the strong edge coloring of these graphs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 50 条
  • [1] Strong Chromatic Index of Sparse Graphs
    Yang, Daqing
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2016, 83 (04) : 334 - 339
  • [2] On the Strong Chromatic Index of Sparse Graphs
    DeOrsey, Philip
    Ferrara, Michael
    Graber, Nathan
    Hartke, Stephen G.
    Nelsen, Luke L.
    Sullivan, Eric
    Jahanbekam, Sogol
    Lidicky, Bernard
    Stolee, Derrick
    White, Jennifer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [3] THE STRONG CHROMATIC INDEX OF GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    GYARFAS, A
    TUZA, Z
    ARS COMBINATORIA, 1990, 29B : 205 - 211
  • [4] Injective chromatic index of sparse graphs
    Bu, Yuehua
    Wang, Peng
    Zhu, Hongguo
    Zhu, Junlei
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 9 - 16
  • [5] Strong chromatic index in subset graphs
    Quinn, JJ
    Sundberg, EL
    ARS COMBINATORIA, 1998, 49 : 155 - 159
  • [6] Strong Chromatic Index of Outerplanar Graphs
    Wang, Ying
    Wang, Yiqiao
    Wang, Weifan
    Cui, Shuyu
    AXIOMS, 2022, 11 (04)
  • [7] The strong chromatic index of random graphs
    Frieze, A
    Krivelevich, M
    Sudakov, B
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (03) : 719 - 727
  • [8] Strong chromatic index of products of graphs
    Togni, Olivier
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01): : 47 - 56
  • [9] The strong chromatic index of Halin graphs
    Lai, Hsin-Hao
    Lih, Ko-Wei
    Tsai, Ping-Ying
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1536 - 1541
  • [10] Strong Chromatic Index of Chordless Graphs
    Basavaraju, Manu
    Francis, Mathew C.
    JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 58 - 68