Dichotomy and existence of periodic solutions of quasilinear functional differential equations

被引:18
作者
Pinto, Manuel [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Periodic solutions; Integrable dichotomy; Differential equations with delay; Integro-differential equations; Krasnoselskii's fixed point theorem; INTEGRAL-EQUATIONS; ECOLOGICAL MODEL; STABILITY; SYSTEM;
D O I
10.1016/j.na.2009.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Krasnoselskii's fixed point theorem, functional analysis methods and dichotomy theory, we study the existence and uniqueness of the periodic solutions of integro-differential equations with bounded and unbounded delays. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 39 条
[21]   On boundary value problems for systems of linear functional differential equations [J].
Kiguradze, I ;
Puza, B .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1997, 47 (02) :341-373
[22]  
Kiguradze I., 2003, BOUNDARY VALUE PROBL
[23]  
KIGURADZE I., 1997, ARCH MATH, V33, P197
[24]  
Kiguradze I., 1997, MEM DIFFERENTIAL EQU, V12, P106
[25]  
Lakshmikantham V., 1996, MATH ITS APPL, V370
[26]   ROUGHNESS OF (H,K)-DICHOTOMIES [J].
NAULIN, R ;
PINTO, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :20-35
[27]  
OMON A, 2009, J DIFFERENCE EQS APP, V15, P461
[28]   DICHOTOMIES AND ASYMPTOTIC FORMULAS FOR THE SOLUTIONS OF DIFFERENTIAL-EQUATIONS [J].
PINTO, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (01) :16-31
[29]  
PINTO M, 1996, P 1 WORLD C NONL AN, P1181
[30]  
Pinto M, 2009, ELECTRON J QUAL THEO, P1