Dichotomy and existence of periodic solutions of quasilinear functional differential equations

被引:18
作者
Pinto, Manuel [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Periodic solutions; Integrable dichotomy; Differential equations with delay; Integro-differential equations; Krasnoselskii's fixed point theorem; INTEGRAL-EQUATIONS; ECOLOGICAL MODEL; STABILITY; SYSTEM;
D O I
10.1016/j.na.2009.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Krasnoselskii's fixed point theorem, functional analysis methods and dichotomy theory, we study the existence and uniqueness of the periodic solutions of integro-differential equations with bounded and unbounded delays. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 39 条
[1]   Floquet theory and stability of nonlinear integro-differential equations [J].
Agarwal, R ;
Bohner, M ;
Domoshnitsky, A ;
Goltser, Y .
ACTA MATHEMATICA HUNGARICA, 2005, 109 (04) :305-330
[2]  
[Anonymous], 1992, STABILITY OSCILLATIO
[3]  
Bainov D. D., 1989, IMPULSIVE DIFFERENTI IMPULSIVE DIFFERENTI
[4]  
Burton T. A., 2005, Stability and periodic solutions of ordinary and functional differential equations
[5]  
Burton T.A., 1983, Volterra Integral and Differential Equations
[6]   Integral equations, implicit functions, and fixed points [J].
Burton, TA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) :2383-2390
[7]   Basic neutral integral equations of advanced type [J].
Burton, TA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (3-4) :295-310
[8]  
[陈凤德 Chen Fengde], 2005, [应用数学学报, Acta Mathematicae Applicatae Sinica], V28, P55
[9]  
Coppel W.A., 1965, Stability and asymptotic behavior of differential equations
[10]  
Coppel W.A., 1978, DICHOTOMIES STABILIT