Local-Global Principles for Constant Reductive Groups over Semi-Global Fields

被引:2
|
作者
Colliot-Thelene, Jean-Louis [1 ]
Harbater, David [2 ]
Hartmann, Julia [2 ]
Krashen, Daniel [2 ]
Parimala, R. [3 ]
Suresh, V [3 ]
机构
[1] Univ Paris Saclay, Arithmet & Geometrie Algebr, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
HOMOGENEOUS SPACES; HASSE PRINCIPLE; TORI; FORMS;
D O I
10.1307/mmj/20217219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study local-global principles for torsors under reductive linear algebraic groups over semi-global fields; that is, over one-variable function fields over complete discretely valued fields. We provide conditions on the group and the semi-global field under which the local-global principle holds, and we compute the obstruction to the local-global principle in certain classes of examples. Using our description of the obstruction, we give the first example of a semisimple simply connected group over a semi-global field where the local-global principle fails. Our methods include patching and R-equivalence.
引用
收藏
页码:77 / 144
页数:68
相关论文
共 46 条
  • [1] Local-global principles for curves over semi-global fields
    Harbater, David
    Krashen, Daniel
    Pirutka, Alena
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (01) : 177 - 193
  • [3] Local-global principles for norm one tori over semi-global fields
    Mishra, Sumit Chandra
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 1 - 21
  • [4] Local-global principles for tori over arithmetic curves
    Colliot-Thelene, Jean-Louis
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    Parimala, Raman
    Suresh, Venapally
    ALGEBRAIC GEOMETRY, 2020, 7 (05): : 607 - 633
  • [5] Hasse principle for hermitian spaces over semi-global fields
    Wu, Zhengyao
    JOURNAL OF ALGEBRA, 2016, 458 : 171 - 196
  • [6] Local-global principle for classical groups over function fields of p-adic curves
    Parimala, Raman
    Suresh, Venapally
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (02) : 255 - 304
  • [7] LOCAL-GLOBAL PRINCIPLES FOR TORSORS OVER ARITHMETIC CURVES
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (06) : 1559 - 1612
  • [8] Patching and local-global principles for homogeneous spaces over function fields of p-adic curves
    Colliot-Thelene, Jean-Louis
    Parimala, Raman
    Suresh, Venapally
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 1011 - 1033
  • [9] Local-global principles for embedding of fields with involution into simple algebras with involution
    Prasad, Gopal
    Rapinchuk, Andrei S.
    COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (03) : 583 - 645
  • [10] Local-global principles for representations of quadratic forms
    Jordan S. Ellenberg
    Akshay Venkatesh
    Inventiones mathematicae, 2008, 171 : 257 - 279