Efficient detection of patterns in 2D trajectories of moving points

被引:58
作者
Gudmundsson, Joachim
van Kreveld, Marc [1 ]
Speckmann, Bettina
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[3] NICTA, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
computational geometry; motion patterns; tracking data; approximation algorithms; data mining;
D O I
10.1007/s10707-006-0002-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Moving point object data can be analyzed through the discovery of patterns in trajectories. We consider the computational efficiency of detecting four such spatio-temporal patterns, namely flock, leadership, convergence, and encounter, as defined by Laube et al., Finding REMO-detecting relative motion patterns in geospatial lifelines, 201-214, (2004). These patterns are large enough subgroups of the moving point objects that exhibit similar movement in the sense of direction, heading for the same location, and/or proximity. By the use of techniques from computational geometry, including approximation algorithms, we improve the running time bounds of existing algorithms to detect these patterns.
引用
收藏
页码:195 / 215
页数:21
相关论文
共 30 条
[1]  
[Anonymous], TIME INTEGRATIVE GEO
[2]  
Aronov B, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P886
[3]   An optimal algorithm for approximate nearest neighbor searching in fixed dimensions [J].
Arya, S ;
Mount, DM ;
Netanyahu, NS ;
Silverman, R ;
Wu, AY .
JOURNAL OF THE ACM, 1998, 45 (06) :891-923
[4]   DECOMPOSABLE SEARCHING PROBLEMS [J].
BENTLEY, JL .
INFORMATION PROCESSING LETTERS, 1979, 8 (05) :244-251
[5]   Approximate nearest neighbor queries revisited [J].
Chan, TM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (03) :359-373
[6]   CUTTING HYPERPLANES FOR DIVIDE-AND-CONQUER [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (02) :145-158
[7]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[8]   New lower bounds for convex hull problems in odd dimensions [J].
Erickson, J .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1198-1214
[9]  
FRANK A, 2001, LIFE MOTION SOCIOECO, P353
[10]   The exact fitting problem in higher dimensions [J].
Guibas, LJ ;
Overmars, MH ;
Robert, JM .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (04) :215-230