An existence and uniqueness result for the singular Lane-Emden-Fowler equation

被引:8
作者
Guo Chunmei [1 ]
Zhai Chengbo [1 ]
Song Ruipeng [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
关键词
Existence and uniqueness; Positive solution; Fixed point theorem of general alpha-concave operators; Singular Lane-Emden-Fowler equation; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS;
D O I
10.1016/j.na.2009.08.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a fixed point theorem of general alpha-concave operators, we present in this paper criteria which guarantee the existence and uniqueness of positive solutions for the singular Lane-Emden-Fowler equation. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1275 / 1279
页数:5
相关论文
共 28 条
[11]   SOLUTIONS OF SINGULAR SEMILINEAR ELLIPTIC-EQUATIONS [J].
DALMASSO, R .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 153 :191-201
[12]  
Fulks W., 1960, OSAKA MATH J, V12, P1
[13]   Sublinear singular elliptic problems with two parameters [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :520-536
[14]  
Ghergu M., 2008, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, V37
[15]   ON A SINGULAR NONLINEAR ELLIPTIC PROBLEM [J].
GOMES, SM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1359-1369
[16]   Multiplicity for sernilinear elliptic equations involving singular nonlinearity [J].
Hernandez, J. ;
Karatson, J. ;
Simon, P. L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (02) :265-283
[17]  
Hernández J, 2007, P ROY SOC EDINB A, V137, P41
[18]   Classical and weak solutions of a singular semilinear elliptic problem [J].
Lair, AV ;
Shaker, AW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) :371-385
[19]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[20]  
Lin XN, 2006, J COMPUT APPL MATH, V196, P155, DOI 10.1016/j.cam.2005.08.016