Experimental investigation on removal of heavy metals (Cu2+, Pb2+, and Zn2+) from aqueous solution by flax fibres

被引:69
|
作者
Abbar, Bouamama [1 ]
Alem, Abdellah [1 ]
Marcotte, Stephane [2 ]
Pantet, Anne [1 ]
Ahfir, Nasre-Dine [1 ]
Bizet, Laurent [1 ]
Duriatti, Davy [3 ]
机构
[1] Normandie Univ, UNIHAVRE, LOMC,CNRS, UMR 6294, F-76600 Le Havre, France
[2] Normandie Univ, INSA Rouen, COBRA,CNRS, UMR 6014, F-76801 St Etienne Du Rouvray, France
[3] Teillage Vandecandelaere, Depestele, 5 Rue Eglise, F-14540 Bourguebus, France
关键词
Biomass; Heavy metals; Adsorption; Flax fibre; Runoff; Filtration; ADSORPTION; BIOSORPTION; COPPER; IONS; CADMIUM; BIOMASS; EQUILIBRIUM; KINETICS; SORPTION; PB(II);
D O I
10.1016/j.psep.2017.05.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study was carried out to examine the adsorption capacity of the flax fibres tows (FFT) adsorbent for the removal of heavy metals from aqueous solution using batch-adsorption techniques. The influence of contact time, pH, initial concentration and adsorbent quantity on the adsorption process was studied. Results revealed that adsorption rate increased rapidly, and the optimal removal efficiency was reached within 60 min. The adsorption isotherms could well be fitted by the Langmuir model. The RL value in the present investigation was less than one, indicating that the adsorption of the metal ions onto FFT is favourable. After treatment of the aqueous solution with FFT, the levels of heavy metals were observed to decrease with 97.4% for lead, 79% for copper, and 73.28% for zinc. These results indicate that the FFT can be used without specific treatment and are economically viable for the removal of metal ions. We are currently investigating the use of FFT as a bio-based material for the treatment of runoff water in urban zone. (C) 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条
  • [21] Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada
    Carreras, Hebe A.
    Pignata, Maria L.
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2007, 67 (01) : 59 - 66
  • [22] Novel Cross-Linked Polyphosphonate for the Removal of Pb2+ and Cu2+ from Aqueous Solution
    Al Hamouz, Othman Charles S.
    Ali, Shaikh A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (43) : 14178 - 14187
  • [23] Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution
    Lin Liang
    Yu Yan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (06) : 879 - 888
  • [24] Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution
    林亮
    于岩
    结构化学, 2016, 35 (06) : 879 - 888
  • [25] Single and Competitive Adsorption Behaviors of Cu2+, Pb2+ and Zn2+ on the Biochar and Magnetic Biochar of Pomelo Peel in Aqueous Solution
    Wu, Qianlan
    Dong, Shuzhen
    Wang, Lijun
    Li, Xiaoyun
    WATER, 2021, 13 (06)
  • [26] Competitive biosorption of Pb2+ Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin
    Sengil, I. Ayhan
    Ozacar, Mahmut
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) : 1488 - 1494
  • [27] Removal of Cu2+ and Pb2+ in aqueous solutions by fly ash
    Erol, M
    Küçükbayrak, SK
    Ersoy-Meriçboyu, A
    Ulubas, T
    ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (7-8) : 1319 - 1331
  • [28] Crosslinked Carboxymethyl Sago Starch/Citric Acid Hydrogel for Sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from Aqueous Solution
    Keirudin, Amyrah Auni
    Zainuddin, Norhazlin
    Yusof, Nor Azah
    POLYMERS, 2020, 12 (11) : 1 - 21
  • [29] Potential of using Alfa grass fibers (Stipa Tenacissima L.) to remove Pb2+, Cu2+, and Zn2+ from an aqueous solution
    Bennacer, Lyacine
    Benmammar, Djilali
    Ahfir, Nasre-Dine
    Alem, Abdellah
    Mignot, Melanie
    Pantet, Anne
    El Maana, Sana
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (08) : 1651 - 1667
  • [30] Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization
    Zheng, Lei
    Wang, Wei
    Qiao, Wei
    Shi, Yunchun
    Liu, Xiao
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2015, 9 (04) : 642 - 648