High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator

被引:67
|
作者
Kim, Yong Jun [1 ]
Gu, Hyun Mo [1 ]
Kim, Choong Sun [1 ]
Choi, Hyeongdo [1 ]
Lee, Gyusoup [1 ]
Kim, Seongho [1 ]
Yi, Kevin K. [2 ]
Lee, Sang Gug [1 ]
Cho, Byung Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Tegway Co Ltd, Natl Nano Fab Ctr NNFC 711, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Flexible thermoelectric generators; Energy harvesting; Self-powered; Wireless sensor nodes; Fill factor; Flexible TEG optimization; TRIBOELECTRIC GENERATOR; ENERGY; DESIGN;
D O I
10.1016/j.energy.2018.08.064
中图分类号
O414.1 [热力学];
学科分类号
摘要
As industrial environments expand and become more automated, wireless sensor networks are attracting attention as an essential technology for efficient operation and safety. A wireless sensor node (WSN), self-powered by an energy harvester, can significantly reduce maintenance costs as well as the manpower costs associated with the replacement of batteries. Among the many studies on energy harvesting technologies for self-powered WSNs, however, the harvested power has been too low to be practically used in industrial environments. In this work, we demonstrate a self-powered WSN driven by a flexible thermoelectric generator (f-TEG) with a significantly improved degree of practicality. We developed a large-area f-TEG which can be wrapped around heat pipes with various diameters, improving their usability and scalability. A study was conducted to optimize the performance of the f-TEG for a particular WSN application, and an f-TEG fabricated with an area of 140 x 113 mm(2) harvested 272 mW of energy from a heat pipe at a temperature of 70 degrees C. We also tested a complete self-powered WSN system capable of the remote monitoring of the heat pipe temperature, ambient temperature, humidity, CO2 and volatile organic compound concentrations via LoRa communication. The fabricated self-powered WSN system can wirelessly transmit the data at distances as long as 500 m. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:526 / 533
页数:8
相关论文
共 50 条
  • [21] A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator
    Yuan, Jinfeng
    Zhu, Rong
    APPLIED ENERGY, 2020, 271
  • [22] Integration of Flexible Thermoelectric Energy Harvesting System for Self-Powered Sensor Applications
    Liang, Linlong
    Sheng, Pan
    Yao, Guang
    Huang, Zhenlong
    Lin, Yuan
    Jiang, Binbin
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) : 3656 - 3664
  • [23] A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events
    Xu, Dacheng
    Li, Suiqiong
    Li, Mengyang
    Xie, Danpeng
    Dong, Chuan
    Li, Xinxin
    SMART MATERIALS AND STRUCTURES, 2017, 26 (09)
  • [24] FLEXIBLE ELECTRET GENERATOR FOR SELF-POWERED METAL CATHODIC PROTECTION
    Zhong, Junwen
    Lin, Liwei
    2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, : 2480 - 2483
  • [25] High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film
    Zhong, Yan
    Wang, Jiaqi
    Han, Lei
    Dai, Shengping
    Zhu, Hao
    Hua, Jing
    Cheng, Guanggui
    Ding, Jianning
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 349
  • [26] Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator
    Kim, Choong Sun
    Yang, Hyeong Man
    Lee, Jinseok
    Lee, Gyu Soup
    Choi, Hyeongdo
    Kim, Yong Jun
    Lim, Se Hwan
    Cho, Seong Hwan
    Cho, Byung Jin
    ACS ENERGY LETTERS, 2018, 3 (03): : 501 - 507
  • [27] Self-powered autonomous wireless sensor node using vibration energy harvesting
    Torah, R.
    Glynne-Jones, P.
    Tudor, M.
    O'Donnell, T.
    Roy, S.
    Beeby, S.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (12)
  • [28] Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester
    Aranda, Jesus Javier
    Bader, Sebastian
    Oelmann, Bengt
    SENSORS, 2021, 21 (04) : 1 - 18
  • [29] Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector
    Cao, Fengren
    Meng, Linxing
    Wang, Meng
    Tian, Wei
    Li, Liang
    ADVANCED MATERIALS, 2019, 31 (12)
  • [30] A self-powered flexible sensor based on thermoelectric generation for NO2 gas detection
    Fan, Yuhang
    Liu, Changxin
    Zhao, Kaiyuan
    Shao, Tong
    Chen, Ruoshui
    Pan, Yilin
    Liu, Zhijian
    Pan, Xinxiang
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (15) : 1776 - 1784