Extremely High Photovoltage (3.16 V) Achieved in Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics

被引:17
作者
Jia, Lemin [1 ]
Li, Titao [1 ]
Huang, Feng [1 ]
Zheng, Wei [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
来源
ACS PHOTONICS | 2022年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
graphene; heterojunction; photovoltaic; vacuum ultraviolet; RAMAN-SCATTERING; GRAPHENE; LAYER; PHOTOCURRENT; SPECTROSCOPY; GENERATION;
D O I
10.1021/acsphotonics.2c00342
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Open-circuit voltage is one of the most important indicators to judge the performance of photovoltaic devices (such as solar cells and photovoltaic detectors), which makes its improvement greatly needed and pursued. Heterostacking based on van der Waals forces opens up a new way for devices which aim to achieve high photovoltage through realizing perfect heterojunctions. Here we propose a method to enhance the quasi-Fermi level splitting of AIN-based van der Waals heterojunction photovoltaic devices by adjusting the Fermi level of graphene as a hole transport layer through chemical doping. Based on this method, the open-circuit voltage, short circuit current and power conversion efficiency of the device are significantly improved by 28.5%, 11.2%, and 74.5%, respectively (under 185 nm VUV irradiation), of which the 3.16 V open-circuit voltage is the highest value reported nowadays of heterojunction devices. The mechanism of this significant increase in open-circuit voltage can be explained by a combined effect, including the effective regulation of the Fermi surface of graphene by chemical doping and the enhanced Fermi level splitting achieved by photoinjection of doped graphene. The device design and processing strategies proposed in this work provide a reference for improving the performance of other wide-bandgap semiconductor-based photovoltaic devices.
引用
收藏
页码:2101 / 2108
页数:8
相关论文
共 44 条
[1]   Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition [J].
Balducci, A ;
Marinelli, M ;
Milani, E ;
Morgada, ME ;
Tucciarone, A ;
Verona-Rinati, G ;
Angelone, M ;
Pillon, M .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[2]   High-efficiency crystalline silicon solar cells: status and perspectives [J].
Battaglia, Corsin ;
Cuevas, Andres ;
De Wolf, Stefaan .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1552-1576
[3]   Controlling inelastic light scattering quantum pathways in graphene [J].
Chen, Chi-Fan ;
Park, Cheol-Hwan ;
Boudouris, Bryan W. ;
Horng, Jason ;
Geng, Baisong ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael F. ;
Segalman, Rachel A. ;
Louie, Steven G. ;
Wang, Feng .
NATURE, 2011, 471 (7340) :617-620
[4]   Coherent phase-matched VUV generation by field-controlled bound states [J].
Chini, Michael ;
Wang, Xiaowei ;
Cheng, Yan ;
Wang, He ;
Wu, Yi ;
Cunningham, Eric ;
Li, Peng-Cheng ;
Heslar, John ;
Telnov, Dmitry A. ;
Chu, Shih-I ;
Chang, Zenghu .
NATURE PHOTONICS, 2014, 8 (06) :437-441
[5]   Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2 [J].
Crowther, Andrew C. ;
Ghassaei, Amanda ;
Jung, Naeyoung ;
Brus, Louis E. .
ACS NANO, 2012, 6 (02) :1865-1875
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Ultrawide-Bandgap Amorphous MgGaO: Nonequilibrium Growth and Vacuum Ultraviolet Application [J].
Dong, Mei ;
Zheng, Wei ;
Xu, Cunhua ;
Lin, Richeng ;
Zhang, Dan ;
Zhang, Zhaojun ;
Huang, Feng .
ADVANCED OPTICAL MATERIALS, 2019, 7 (03)
[8]   The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters [J].
Dutta, U ;
Chatterjee, P .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (04) :2261-2271
[9]  
Gibbings J.C., 1975, Journal of Electrostatics, P187
[10]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242