Laminar Shear Stress Inhibits Endothelial Cell Metabolism via KLF2-Mediated Repression of PFKFB3

被引:232
作者
Doddaballapur, Anuradha [1 ]
Michalik, Katharina M. [1 ]
Manavski, Yosif [1 ]
Lucas, Tina [1 ]
Houtkooper, Riekelt H. [2 ]
You, Xintian [3 ]
Chen, Wei [3 ]
Zeiher, Andreas M. [4 ,6 ]
Potente, Michael [5 ]
Dimmeler, Stefanie [1 ,6 ]
Boon, Reinier A. [1 ]
机构
[1] Goethe Univ Frankfurt, Ctr Mol Med, Inst Cardiovasc Regenerat, D-60054 Frankfurt, Germany
[2] Univ Amsterdam, Acad Med Ctr, Lab Genet Metab Dis, NL-1105 AZ Amsterdam, Netherlands
[3] Max Delbruck Ctr, Berlin, Germany
[4] Goethe Univ Hosp Frankfurt, Dept Cardiol, Frankfurt, Germany
[5] Max Planck Inst Heart & Lung Res, Angiogenesis & Metab Lab, Bad Nauheim, Germany
[6] German Ctr Cardiovasc Res DZHK, Frankfurt, Germany
基金
欧洲研究理事会;
关键词
angiogenesis; endothelium; glycolysis; hemodynamics; metabolism; shear stress down; regulated gene-1 protein; human; KRUPPEL-LIKE FACTOR-2; ANGIOGENESIS; KLF2; GLYCOLYSIS; ACTIVATION; EXPRESSION; CONTAINS; HYPOXIA; FLOW;
D O I
10.1161/ATVBAHA.114.304277
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective-Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results-Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress-mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Kruppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. Conclusions-Our data demonstrate that shear stress-mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 19 条
[1]   Role of Kruppel-like transcription factors in endothelial biology [J].
Atkins, G. Brandon ;
Jain, Mukesh K. .
CIRCULATION RESEARCH, 2007, 100 (12) :1686-1695
[2]   Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2 [J].
Bhattacharya, R ;
SenBanerjee, S ;
Lin, ZY ;
Mir, S ;
Hamik, A ;
Wang, P ;
Mukherjee, P ;
Mukhopadhyay, D ;
Jain, MK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (32) :28848-28851
[3]   Key transcriptional regulators of the vasoprotective effects of shear stress [J].
Boon, R. A. ;
Horrevoets, A. J. G. .
HAMOSTASEOLOGIE, 2009, 29 (01) :39-+
[4]   Lung Kruppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase [J].
Conkright, MD ;
Wani, MA ;
Lingrel, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29299-29306
[5]   Role of Endothelial Cell Metabolism in Vessel Sprouting [J].
De Bock, Katrien ;
Georgiadou, Maria ;
Carmeliet, Peter .
CELL METABOLISM, 2013, 18 (05) :634-647
[6]   Role of PFKFB3-Driven Glycolysis in Vessel Sprouting [J].
De Bock, Katrien ;
Georgiadou, Maria ;
Schoors, Sandra ;
Kuchnio, Anna ;
Wong, Brian W. ;
Cantelmo, Anna Rita ;
Quaegebeur, Annelies ;
Ghesquiere, Bart ;
Cauwenberghs, Sandra ;
Eelen, Guy ;
Phng, Li-Kun ;
Betz, Inge ;
Tembuyser, Bieke ;
Brepoels, Katleen ;
Welti, Jonathan ;
Geudens, Ilse ;
Segura, Inmaculada ;
Cruys, Bert ;
Bifari, Franscesco ;
Decimo, Ilaria ;
Blanco, Raquel ;
Wyns, Sabine ;
Vangindertael, Jeroen ;
Rocha, Susana ;
Collins, Russel T. ;
Munck, Sebastian ;
Daelemans, Dirk ;
Imamura, Hiromi ;
Devlieger, Roland ;
Rider, Mark ;
Van Veldhoven, Paul P. ;
Schuit, Frans ;
Bartrons, Ramon ;
Hofkens, Johan ;
Fraisl, Peter ;
Telang, Sucheta ;
DeBerardinis, Ralph J. ;
Schoonjans, Luc ;
Vinckier, Stefan ;
Chesney, Jason ;
Gerhardt, Holger ;
Dewerchin, Mieke ;
Carmeliet, Peter .
CELL, 2013, 154 (03) :651-663
[7]   KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium [J].
Dekker, Rob J. ;
Boon, Reinier A. ;
Rondaij, Mariska G. ;
Kragt, Astrid ;
Volger, Oscar L. ;
Elderkamp, Yvonne W. ;
Meijers, Joost C. M. ;
Voorberg, Jan ;
Pannekoek, Hans ;
Horrevoets, Anton J. G. .
BLOOD, 2006, 107 (11) :4354-4363
[8]   Need glucose to sprout: local metabolic control of angiogenesis [J].
Eichmann, Anne ;
Simons, Michael .
EMBO MOLECULAR MEDICINE, 2013, 5 (10) :1459-1461
[9]   KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells [J].
Fledderus, Joost O. ;
Boon, Reinier A. ;
Volger, Oscar L. ;
Hurttila, Hanna ;
Yla-Herttuala, Seppo ;
Pannekoek, Hans ;
Levonen, Anna-Liisa ;
Horrevoets, Anton J. G. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2008, 28 (07) :1339-1346
[10]   Kruppel-like Factor 2 Inhibits Hypoxia-inducible Factor 1α Expression and Function in the Endothelium [J].
Kawanami, Daiji ;
Mahabeleshwar, Ganapati H. ;
Lin, Zhiyong ;
Atkins, G. Brandon ;
Hamik, Anne ;
Haldar, Saptarsi M. ;
Maemura, Koji ;
LaManna, Joseph C. ;
Jain, Mukesh K. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (31) :20522-20530