A Multi-objective Feature Selection Approach Based on Binary PSO and Rough Set Theory

被引:0
|
作者
Cervante, Liam [1 ]
Xue, Bing [1 ]
Shang, Lin [2 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, POB 600, Wellington 6140, New Zealand
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210046, Peoples R China
来源
EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION (EVOCOP 2013) | 2013年 / 7832卷
关键词
Particle Swarm Optimisation; Feature Selection; Rough Set Theory; Multi-objective Optimisation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Feature selection has two main objectives of maximising the classification performance and minimising the number of features. However, most existing feature selection algorithms are single objective wrapper approaches. In this work, we propose a multi-objective filter feature selection algorithm based on binary particle swarm optimisation (PSO) and probabilistic rough set theory. The proposed algorithm is compared with other five feature selection methods, including three PSO based single objective methods and two traditional methods. Three classification algorithms (naive bayes, decision trees and k-nearest neighbours) are used to test the generality of the proposed filter algorithm. Experiments have been conducted on six datasets of varying difficulty. Experimental results show that the proposed algorithm can automatically evolve a set of non-dominated feature subsets. In almost all cases, the proposed algorithm outperforms the other five algorithms in terms of both the number of features and the classification performance (evaluated by all the three classification algorithms). This paper presents the first study on using PSO and rough set theory for multi-objective feature selection.
引用
收藏
页码:25 / +
页数:2
相关论文
共 50 条
  • [31] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263
  • [32] Feature Selection Based on Neighborhood Systems and Rough Set Theory
    He, Ming
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 3 - 5
  • [33] A Multi-objective Feature Selection Based on Differential Evolution
    Zhang, Yong
    Rong, Miao
    Gong, Dunwei
    FOURTH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (CCAIS 2015), 2015, : 302 - 306
  • [34] Zone Oriented Binary Multi-Objective Charged System Search Based Feature Selection Approach for Multi-Label Classification
    Dhal, Pradip
    Azad, Chandrashekhar
    EXPERT SYSTEMS, 2025, 42 (02)
  • [35] `Research on Feature Selection/Attribute Reduction Method Based on Rough Set Theory
    Wang, Shi Qiang
    Gao, Cai Yun
    Luo, Chang
    Zheng, Gui Mei
    Zhou, Yan Nian
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY [ICICT-2019], 2019, 154 : 194 - 198
  • [36] An Exact Feature Selection Algorithm Based on Rough Set Theory
    Rezvan, Mohammad Taghi
    Hamadani, Ali Zeinal
    Hejazi, Seyed Reza
    COMPLEXITY, 2015, 20 (05) : 50 - 62
  • [37] A Novel Algorithm for Feature Selection Based on Rough set Theory
    Zhou Feng-xiang
    Mu Chun-ge
    Xu Qun-san
    Zhang Xiao-feng
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 800 - +
  • [38] A model based on ant colony system and rough set theory to feature selection
    Bello, R.
    Nowe, A.
    Caballero, Y.
    Gomez, Y.
    Vrancx, P.
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 275 - 276
  • [39] MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR FILTER BASED FEATURE SELECTION IN CLASSIFICATION
    Xue, Bing
    Cervante, Liam
    Shang, Lin
    Browne, Will N.
    Zhang, Mengjie
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (04)
  • [40] Improved cervix lesion classification using multi-objective binary firefly algorithm-based feature selection
    Sahoo, Anita
    Chandra, Satish
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2016, 8 (06) : 367 - 378