On general implicit hybrid iteration method for triple hierarchical variational inequalities with hierarchical variational inequality constraints

被引:21
作者
Ceng, Lu-Chuan [1 ]
Koebis, Elisabeth [2 ]
Zhao, Xiaopeng [3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Martin Luther Univ Halle Wittenberg, Fac Nat Sci 2, Inst Math, Halle, Sachsen Anhalt, Germany
[3] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
General implicit hybrid iterative algorithm; triple hierarchical variational inequality; Mann's implicit iteration method; Korpelevich's extragradient method; nonexpansive mapping; STEEPEST-DESCENT METHODS; STRONG-CONVERGENCE; EXTRAGRADIENT METHOD; ACCRETIVE-OPERATORS; NONEXPANSIVE-MAPPINGS; PROJECTION METHODS; WEAK-CONVERGENCE; FINITE FAMILY; FIXED-POINTS; ZERO-POINT;
D O I
10.1080/02331934.2019.1703978
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the triple hierarchical variational inequality problem (THVIP, for short) with the hierarchical variational inequality constraint for finitely many nonexpansive mappings and an asymptotically nonexpansive mapping in a real Hilbert space. Based on Korpelevich's extragradient method, hybrid steepest-descent method, Mann's implicit iteration method and Halpern's iteration method, a general implicit hybrid iterative algorithm for solving this THVIP is proposed. Under mild conditions, the strong convergence of the iterative sequences generated by the algorithm is established. Our results improve and extend the corresponding results in the earlier and recent literature.
引用
收藏
页码:1961 / 1986
页数:26
相关论文
共 42 条
[1]   An extragradient algorithm for solving bilevel pseudomonotone variational inequalities [J].
Anh, P. N. ;
Kim, J. K. ;
Muu, L. D. .
JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) :627-639
[2]   Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules [J].
Cai, Gang ;
Shehu, Yekini ;
Iyiola, Olaniyi Samuel .
NUMERICAL ALGORITHMS, 2018, 77 (02) :535-558
[3]  
Ceng LC, 2012, FIXED POINT THEOR-RO, V13, P403
[4]   Relaxed hybrid steepest-descent methods with variable parameters for triple-hierarchical variational inequalities [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. -C. .
APPLICABLE ANALYSIS, 2012, 91 (10) :1793-1810
[5]  
Ceng L.C., 2019, J APPL NUMER OPTIM, V1, P1
[6]  
Ceng L. C., 2019, APPL SET VALUED OPTI, V1, P1
[7]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[8]   Hybrid implicit steepest-descent methods for triple hierarchical variational inequalities with hierarchical variational inequality constraints [J].
Ceng, Lu-Chuan ;
Liou, Yeong-Cheng ;
Wen, Ching-Feng ;
Lo, Ching-Hua .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07) :3963-3987
[9]   Regularized hybrid iterative algorithms for triple hierarchical variational inequalities [J].
Ceng, Lu-Chuan ;
Wong, Ngai-Ching ;
Yao, Jen-Chih .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[10]   Hybrid extragradient method for hierarchical variational inequalities [J].
Ceng, Lu-Chuan ;
Latif, Abdul ;
Ansari, Qamrul Hasan ;
Yao, Jen-Chih .
FIXED POINT THEORY AND APPLICATIONS, 2014,