Yolk-Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO2 Reforming of Methane

被引:41
作者
Wang, Changzhen [1 ]
Wu, Hao [1 ]
Jie, Xiangyu [2 ,3 ]
Zhang, Xiaoming [1 ]
Zhao, Yongxiang [1 ]
Yao, Benzhen [2 ]
Xiao, Tiancun [1 ,2 ]
机构
[1] Shanxi Univ, Engn Res Ctr, Minist Educ Fine Chem, Taiyuan 030006, Peoples R China
[2] Univ Oxford, KACST Oxford Ctr Excellence Petrochem, Inorgan Chem Lab, Oxford OX1 3QR, England
[3] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
关键词
core/yolk-shell; nanoreactor; nanocapsule; shell diffusion effect; CO2 reforming of methane; NI-CAO-ZRO2; CATALYST; CARBON-DIOXIDE; ACTIVE-SITES; DRY; SILICA; PERFORMANCE; CH4; NANOPARTICLES; NANOCATALYSTS; TEMPERATURE;
D O I
10.1021/acsami.1c06847
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Well-geometric-confined yolk-shell catalysts can act as nanoreactors that are of benefit for the antisintering of metals and resistance to coke formation in high-temperature reactions such as the CO2 reforming of methane. Notwithstanding the credible advances of core/yolk-shell catalysts, the enlarged shell diffusion effects that occur under high space velocity can deactivate the catalysts and hence pose a hurdle for the potential application of these types of catalysts. Here, we demonstrated the importance of the shell thickness and porosity of small-sized Ni@SiO2 nanoreactor catalysts, which can vary the diffusional paths/rates of the diffusants that directly affect the catalytic activity. The nanoreactor with an similar to 4.5 nm shell thickness and rich pores performed the best in tolerating the shell diffusion effects, and importantly, no catalytic deactivation was observed. We further proposed a shell diffusion effect scheme by modifying the Weisz-Prater and blocker model and found that the "gas wall/hard blocker" formed on the openings of the shell pores can cause reversible/irreversible interruption of the shell mass transfer and thus temporarily/permanently deactivate the nanoreactor catalysts. This work highlights the shell diffusion effects, apart from the metal sintering and coke formation, as an important factor that are ascribed to the deactivation of a nanoreactor catalyst.
引用
收藏
页码:31699 / 31709
页数:11
相关论文
共 62 条
[1]   Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J].
Akri, Mohcin ;
Zhao, Shu ;
Li, Xiaoyu ;
Zang, Ketao ;
Lee, Adam F. ;
Isaacs, Mark A. ;
Xi, Wei ;
Gangarajula, Yuvaraj ;
Luo, Jun ;
Ren, Yujing ;
Cui, Yi-Tao ;
Li, Lei ;
Su, Yang ;
Pan, Xiaoli ;
Wen, Wu ;
Pan, Yang ;
Wilson, Karen ;
Li, Lin ;
Qiao, Botao ;
Ishii, Hirofumi ;
Liao, Yen-Fa ;
Wang, Aiqin ;
Wang, Xiaodong ;
Zhang, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   INFLUENCE OF IMBEDDED PARTICLES ON STEADY-STATE DIFFUSION [J].
BELL, GE ;
CRANK, J .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1974, 70 (07) :1259-1273
[3]   Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts [J].
Bu, Kankan ;
Kuboon, Sanchai ;
Deng, Jiang ;
Li, Hongrui ;
Yan, Tingting ;
Chen, Guorong ;
Shi, Liyi ;
Zhang, Dengsong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 252 :86-97
[4]   Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle [J].
Buelens, Lukas C. ;
Galvita, Vladimir V. ;
Poelman, Hilde ;
Detavernier, Christophe ;
Marin, Guy B. .
SCIENCE, 2016, 354 (6311) :449-452
[5]   Defect-induced efficient dry reforming of methane over two-dimensional Ni/h-boron nitride nanosheet catalysts [J].
Cao, Yang ;
Maitarad, Phornphimon ;
Gao, Min ;
Taketsugu, Tetsuya ;
Li, Hongrui ;
Yan, Tingting ;
Shi, Liyi ;
Zhang, Dengsong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 238 :51-60
[6]   Nanoreactor of MOF-Derived Yolk-Shell Co@C-N: Precisely Controllable Structure and Enhanced Catalytic Activity [J].
Chen, Huirong ;
Shen, Kui ;
Mao, Qing ;
Chen, Junying ;
Li, Yingwei .
ACS CATALYSIS, 2018, 8 (02) :1417-1426
[7]   Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst:: The effect of temperature on the reforming mechanism [J].
Cui, Yuehua ;
Zhang, Huidong ;
Xu, Hengyong ;
Li, Wenzhao .
APPLIED CATALYSIS A-GENERAL, 2007, 318 :79-88
[8]   Synthesis of Ni@SiO2 Nanotube Particles in a Water-in-Oil Microemulsion Template [J].
Dahlberg, Kevin A. ;
Schwank, Johannes W. .
CHEMISTRY OF MATERIALS, 2012, 24 (14) :2635-2644
[9]   Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights [J].
Das, S. ;
Ashok, J. ;
Bian, Z. ;
Dewangan, N. ;
Wai, M. H. ;
Du, Y. ;
Borgna, A. ;
Hidajat, K. ;
Kawi, S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 230 :220-236
[10]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510