EEG-based Seizure Detection Using Discrete Wavelet Transform through Full-Level Decomposition

被引:0
|
作者
Chen, Duo [1 ]
Wan, Suiren [1 ]
Bao, Forrest Sheng [2 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing, Jiangsu, Peoples R China
[2] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA
关键词
Seizure detection; EEG; wavelet; decomposition level; ARTIFICIAL NEURAL-NETWORKS; EPILEPSY DIAGNOSIS; SIGNALS; ELECTROENCEPHALOGRAM; CLASSIFICATION; MODEL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electroencephalogram (EEG) is a gold standard in epilepsy diagnosis and has been widely studied for epilepsy related signal classification. In the past few years, discrete wavelet transform (DWT) has been widely used to analyze epileptic EEG. However, there are two practical questions unanswered: 1. what the best mother wavelet for epileptic EEG analysis is; 2. what the optimal level of wavelet decomposition is. The main challenge in using wavelet transform is selecting the optimal mother wavelet for the given task, as different mother wavelet applied on the same signal may produces different results. Such a problem also exist in epileptic EEG analysis based on wavelet. Deeper DWT can yield more detailed depiction of signals but it requires substantially more computational time. In this paper, we study these problems, using the most common epileptic EEG classification task, seizure detection, as an example. The results show that all 7 mother wavelets used in this work achieve high seizure detection accuracy at high decomposition levels. Also, decomposition level effects the detection accuracy more significantly than mother wavelets. For all wavelets, decomposition beyond level 7 improves accuracy limitedly and even decreases accuracy. We further study the most effective bands and features for seizure detection. An interpretation to our results is that seizure and non-seizure EEGs differ across all conventional frequency bands of human EEG rhythms. The best accuracy of seizure detection achieved in this research is 92.30% using coif 3 from levels 2 to 7.
引用
收藏
页码:1596 / 1602
页数:7
相关论文
共 50 条
  • [41] A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) : 2003 - 2015
  • [42] Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG
    Liu, Yinxia
    Zhou, Weidong
    Yuan, Qi
    Chen, Shuangshuang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (06) : 749 - 755
  • [43] Detecting Sleep Disorders Based on EEG Signals by Using Discrete Wavelet Transform
    Rao, T. V. K. H.
    Vishwanath, Dhongade Dayanand
    2014 INTERNATIONAL CONFERENCE ON GREEN COMPUTING COMMUNICATION AND ELECTRICAL ENGINEERING (ICGCCEE), 2014,
  • [44] Assessment of a scalp EEG-based automated seizure detection system
    Kelly, K. M.
    Shiau, D. S.
    Kern, R. T.
    Chien, J. H.
    Yang, M. C. K.
    Yandora, K. A.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    CLINICAL NEUROPHYSIOLOGY, 2010, 121 (11) : 1832 - 1843
  • [45] Classifier models and architectures for EEG-based neonatal seizure detection
    Greene, B. R.
    Marnane, W. P.
    Lightbody, G.
    Reilly, R. B.
    Boylan, G. B.
    PHYSIOLOGICAL MEASUREMENT, 2008, 29 (10) : 1157 - 1178
  • [46] EEG-based neonatal seizure detection with Support Vector Machines
    Temko, A.
    Thomas, E.
    Marnane, W.
    Lightbody, G.
    Boylan, G.
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (03) : 464 - 473
  • [47] Nonlinear Dimension Reduction for EEG-Based Epileptic Seizure Detection
    Birjandtalab, J.
    Pouyan, M. Baran
    Nourani, M.
    2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2016, : 595 - 598
  • [49] Adaptive Flexible Analytic Wavelet Transform for EEG-Based Emotion Recognition
    Dwivedi, Amit Kumar
    Verma, Om Prakash
    Taran, Sachin
    IEEE SENSORS JOURNAL, 2024, 24 (18) : 28941 - 28951
  • [50] An Optimized EEG-Based Seizure Detection Algorithm for Implantable Devices
    Manzouri, Farrokh
    Khurana, Lakshay
    Kravalis, Kristina
    Stieglitz, Thomas
    Schulze-Bonhage, Andreas
    Duempelmann, Matthias
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 995 - 998