Optimization of local control of chaos by an evolutionary algorithm

被引:38
作者
Richter, H
Reinschke, KJ
机构
[1] Tech Univ Dresden, Fak Elektrotech, Inst Regelungs & Steuerungstheorie, D-01062 Dresden, Germany
[2] Fraunhofer Inst Prod Tech & Automatisierung, D-70569 Stuttgart, Germany
关键词
control of chaos; optimization; evolutionary algorithm;
D O I
10.1016/S0167-2789(00)00080-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An evolutionary algorithm for optimizing local control of chaos is presented. Based on a Lyapunov approach, a linear control law and the state-space region in which this control law is activated are determined, In addition, we study a relation between certain adjustable design parameters and a particular measure of the uncontrolled chaotic attractor in the state-space region of control (SSRC). From this relation the objective function to be optimized is derived. In that context, we assume a linear control law to be given and optimize size and shape of the SSRC using an evolutionary algorithm. It is shown by examples how the algorithm can also be applied to higher-dimensional systems with possibly more than one positive Lyapunov exponent. (C) 2000 Elsevier Science B.V, All rights reserved.
引用
收藏
页码:309 / 334
页数:26
相关论文
共 30 条
  • [11] Hoffmeister F., 1991, Parallel Problem Solving from Nature. 1st Workshop, PPSN 1 Proceedings, P455, DOI 10.1007/BFb0029787
  • [12] General method of controlling chaos
    Hong, Z
    Jie, Y
    Wang, J
    Wang, YH
    [J]. PHYSICAL REVIEW E, 1996, 53 (01): : 299 - 306
  • [13] LOCAL-CONTROL OF CHAOTIC MOTION
    HUBINGER, B
    DOERNER, R
    MARTIENSSEN, W
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (01): : 103 - 106
  • [14] KAILATH T., 1979, Linear systems
  • [15] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [16] Nijmeijer H., 1990, NONLINEAR DYNAMICAL, V175
  • [17] CONTROLLING CHAOTIC DYNAMIC-SYSTEMS USING TIME-DELAY COORDINATES
    NITSCHE, G
    DRESSLER, U
    [J]. PHYSICA D, 1992, 58 (1-4): : 153 - 164
  • [18] On local control of chaos: The neighbourhood size
    Paskota, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (01): : 169 - 178
  • [19] Directing orbits of chaotic systems in the presence of noise: Feedback correction
    Paskota, M
    Mees, AI
    Teo, KL
    [J]. DYNAMICS AND CONTROL, 1997, 7 (01) : 25 - 47
  • [20] Powell M. J., 1983, MATH PROGRAMMING STA, P288, DOI [DOI 10.1175/BAMS-84-9-1205, DOI 10.1007/978-3-642-68874-4_12]