Optimization of local control of chaos by an evolutionary algorithm

被引:38
作者
Richter, H
Reinschke, KJ
机构
[1] Tech Univ Dresden, Fak Elektrotech, Inst Regelungs & Steuerungstheorie, D-01062 Dresden, Germany
[2] Fraunhofer Inst Prod Tech & Automatisierung, D-70569 Stuttgart, Germany
关键词
control of chaos; optimization; evolutionary algorithm;
D O I
10.1016/S0167-2789(00)00080-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An evolutionary algorithm for optimizing local control of chaos is presented. Based on a Lyapunov approach, a linear control law and the state-space region in which this control law is activated are determined, In addition, we study a relation between certain adjustable design parameters and a particular measure of the uncontrolled chaotic attractor in the state-space region of control (SSRC). From this relation the objective function to be optimized is derived. In that context, we assume a linear control law to be given and optimize size and shape of the SSRC using an evolutionary algorithm. It is shown by examples how the algorithm can also be applied to higher-dimensional systems with possibly more than one positive Lyapunov exponent. (C) 2000 Elsevier Science B.V, All rights reserved.
引用
收藏
页码:309 / 334
页数:26
相关论文
共 30 条
  • [1] [Anonymous], 1989, GENETIC ALGORITHM SE
  • [2] [Anonymous], 1993, CHAOS DYNAMICAL SYST
  • [3] [Anonymous], 1991, Handbook of genetic algorithms
  • [4] CONTROLLING CHAOS IN HIGH DIMENSIONAL SYSTEMS
    AUERBACH, D
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (24) : 3479 - 3482
  • [5] MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS
    BAIER, G
    KLEIN, M
    [J]. PHYSICS LETTERS A, 1990, 151 (6-7) : 281 - 284
  • [6] Control and synchronization of chaos in high dimensional systems: Review of some recent results
    Ding, MZ
    Ding, EJ
    Ditto, WL
    Gluckman, B
    In, V
    Peng, JH
    Spano, ML
    Yang, WM
    [J]. CHAOS, 1997, 7 (04) : 644 - 652
  • [7] On the optimality of the Ott-Grebogi-Yorke control scheme
    Epureanu, BI
    Dowell, EH
    [J]. PHYSICA D, 1998, 116 (1-2): : 1 - 7
  • [8] THE CALCULATION OF LYAPUNOV SPECTRA
    GREENE, JM
    KIM, JS
    [J]. PHYSICA D, 1987, 24 (1-3): : 213 - 225
  • [9] Stabilization of chaotic dynamics: A modern control approach
    Hammad, A
    Jonckheere, E
    Cheng, CY
    Bhajekar, S
    Chien, CC
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (04) : 663 - 677
  • [10] 2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR
    HENON, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) : 69 - 77