Dynamic latent variable analytics for process operations and control

被引:72
作者
Dong, Yining [1 ,2 ]
Qin, S. Joe [1 ,2 ,3 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Chinese Univ Hong Kong, 2001 Longxiang Ave, Shenzhen 518172, Guangdong, Peoples R China
[3] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
关键词
Dynamic PCA; Dynamic PLS; Dynamic CCA; Dynamic latent variable modeling; Process monitoring; Dynamic feature extraction; PLANT-WIDE OSCILLATIONS; QUALITY-RELEVANT; DIAGNOSIS;
D O I
10.1016/j.compchemeng.2017.10.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
After introducing process data analytics using latent variable methods and machine learning, this paper briefly review the essence and objectives of latent variable methods to distill desirable components from a set of measured variables. These latent variable methods are then extended to modeling high dimensional time series data to extract the most dynamic latent time series, of which the current values are best predicted from the past values of the extracted latent variables. We show with an industrial case study how real process data are efficiently and effectively modeled using these dynamic methods. The extracted features reveal hidden information in the data that is valuable for understanding process variability. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 2013, FRONT MASS DAT AN
[2]  
Astrom K. J., 1992, Journal of Process Control, V2, P115, DOI 10.1016/0959-1524(92)85001-D
[3]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[4]  
Chiang L H, 2000, FAULT DETECTION DIAG
[5]  
Cinar A., 2007, Chemical Process Performance Evaluation
[6]  
Dong Y., 2017, J PROCESS CONTROL
[7]  
Dong Y., 2018, 10 IFAC S ADV UNPUB
[8]   Dynamic-Inner Partial Least Squares for Dynamic Data Modeling [J].
Dong, Yining ;
Qin, S. Joe .
IFAC PAPERSONLINE, 2015, 48 (08) :117-122
[9]   Large margin classification using the perceptron algorithm [J].
Freund, Y ;
Schapire, RE .
MACHINE LEARNING, 1999, 37 (03) :277-296
[10]   Detecting influenza epidemics using search engine query data [J].
Ginsberg, Jeremy ;
Mohebbi, Matthew H. ;
Patel, Rajan S. ;
Brammer, Lynnette ;
Smolinski, Mark S. ;
Brilliant, Larry .
NATURE, 2009, 457 (7232) :1012-U4