Trajectory tracking for uncertain Unicycle Mobile Robots: A Super-Twisting approach

被引:18
作者
Rochel, Pablo [1 ]
Rios, Hector [1 ,2 ]
Mera, Manuel [3 ]
Dzul, Alejandro [1 ]
机构
[1] IT Laguna, Tecnol Nacl Mexico, Torreon 27000, Coahuila, Mexico
[2] Catedras CONACYT, Mexico City 03940, Mexico
[3] ESIME Inst Politecn Nacl, Mexico City 07340, Mexico
关键词
Mobile robots; Trajectory tracking; Sliding-modes control;
D O I
10.1016/j.conengprac.2022.105078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work addresses the design of a robust controller for the perturbed kinematic model of the Unicycle MobileRobot. The proposed controller is based on the Super-Twisting algorithm and, given the underactuated natureof the system, two sliding surfaces are proposed to ensure asymptotic convergence of the tracking error to zero,despite the presence of some external disturbances. The synthesis of the proposed controller is given in terms ofLinear Matrix Inequalities while the convergence proofs are based on the Lyapunov and Input-to-State Stabilitytheory. Simulation, experimental results and a comparison with two other controllers show the feasibility ofthe proposed strategy.
引用
收藏
页数:11
相关论文
共 26 条
[1]  
Ailon A., 2008, P IFAC WORLD C SEOUL, V41, P9546, DOI [10.3182/20080706-5-KR-1001.01614, DOI 10.3182/20080706-5-KR-1001.01614]
[2]   Design and implementation of event-triggered adaptive controller for commercial mobile robots subject to input delays and limited communications [J].
Al Issa, Sami ;
Kar, Indrani .
CONTROL ENGINEERING PRACTICE, 2021, 114
[3]  
Azzabi A., 2021, INT J ADV ROBOT SYST, V18, P1
[4]   A simple and reliable technique to design kinematic-based sideslip estimators [J].
Bascetta, Luca ;
Baur, Marco ;
Ferretti, Gianni .
CONTROL ENGINEERING PRACTICE, 2020, 96
[5]  
Batti H., 2019, 2019 INT C CONTROL A, P1
[6]   Design of a PID optimized neural networks and PD fuzzy logic controllers for a two-wheeled mobile robot [J].
Ben Jabeur, Chiraz ;
Seddik, Hassene .
ASIAN JOURNAL OF CONTROL, 2021, 23 (01) :23-41
[7]  
Bloch A. M., 2003, Nonholonomic mechanics and control, P207
[8]  
Castillo O., 2019, TYPE 2 FUZZY LOGIC C, P85, DOI DOI 10.1007/978-3-030-03134-3_6
[9]  
De Luca A., 1998, Robot motion planning and control, P171, DOI 10.1007/BFb0036073
[10]  
de Wit C. C., 2012, Theory of robot control