Going Beyond Lithium Hybrid Capacitors: Proposing a New High-Performing Sodium Hybrid Capacitor System for Next-Generation Hybrid Vehicles Made with Bio-Inspired Activated Carbon

被引:174
作者
Thangavel, Ranjith [1 ]
Kaliyappan, Karthikeyan [2 ]
Kang, Kisuk [3 ]
Sun, Xueliang [2 ]
Lee, Yun-Sung [1 ]
机构
[1] Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea
[2] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
关键词
SUPERIOR RATE CAPABILITY; LI-ION CAPACITORS; LONG CYCLE LIFE; CATHODE MATERIAL; HIGH-POWER; ELECTROCHEMICAL PERFORMANCE; COATED NA3V2(PO4)(3); ELECTRODE MATERIALS; ENERGY; BATTERIES;
D O I
10.1002/aenm.201502199
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel sodium hybrid capacitor (NHC) is constructed with an intercalation-type sodium material [carbon coated-Na3V2(PO4)(3), C-NVP] and high surface area-activated carbon derived from an eco-friendly resource cinnamon sticks (CDCs) in an organic electrolyte. This novel NHC possesses a combination of high energy and high power density, along with remarkable electrochemical stability. In addition, the C-NVP/CDC system outperforms present, well-established lithium hybrid capacitor systems in all areas, and can thus be added to the list of candidates for future electric vehicles. A careful optimization of mass balance between electrode materials enables the C-NVP/CDC cell to exhibit extraordinary capacitance performance. This novel NHC produces an energy density of 118 Wh kg(-1) at a specific power of 95 W kg(-1) and retains an energy density of 60 Wh kg(-1) with high specific power of 850 W kg(-1). Furthermore, a discharge capacitance of 53 F g(-1) is obtained from the C-NVP/CDC cell at a 1 mA cm(-2) current density, along with 95% capacitance retention, even after 10 000 cycles. The sluggish kinetics of the Na ion battery system is successfully overcome by developing a stable, high-performing NHC system.
引用
收藏
页数:9
相关论文
共 68 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism [J].
An, Qinyou ;
Xiong, Fangyu ;
Wei, Qiulong ;
Sheng, Jinzhi ;
He, Liang ;
Ma, Dongling ;
Yao, Yan ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[3]   Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host [J].
Aravindan, V. ;
Shubha, N. ;
Ling, W. Chui ;
Madhavi, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (20) :6145-6151
[4]   Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors [J].
Aravindan, V. ;
Chuiling, W. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. ;
Madhavi, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5808-5814
[5]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]   Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability [J].
Arun, Nagasubramanian ;
Jain, Akshay ;
Aravindan, Vanchiappan ;
Jayaraman, Sundaramurthy ;
Ling, Wong Chui ;
Srinivasan, Madapusi P. ;
Madhavi, Srinivasan .
NANO ENERGY, 2015, 12 :69-75
[8]   A short review on the comparison between Li battery systems and rechargeable magnesium battery technology [J].
Aurbach, D ;
Gofer, Y ;
Lu, Z ;
Schechter, A ;
Chusid, O ;
Gizbar, H ;
Cohen, Y ;
Ashkenazi, V ;
Moshkovich, M ;
Turgeman, R ;
Levi, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :28-32
[9]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[10]   From dead leaves to high energy density supercapacitors [J].
Biswal, Mandakini ;
Banerjee, Abhik ;
Deo, Meenal ;
Ogale, Satishchandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1249-1259