Rational integrability of two-dimensional quasi-homogeneous polynomial differential systems

被引:13
|
作者
Algaba, A. [1 ]
Garcia, C. [1 ]
Reyes, M. [1 ]
机构
[1] Univ Huelva, Dept Math, Fac Ciencias Expt, Huelva, Spain
关键词
Quasi-homogeneous vector field; Rational integrability; Kowalevskaya exponents; 1ST INTEGRALS; EQUATIONS; NONINTEGRABILITY; EXISTENCE;
D O I
10.1016/j.na.2010.04.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize, in terms of the conservative-dissipative decomposition of a vector field, the two-dimensional quasi-homogeneous polynomial differential systems which have a rational first integral. We obtain the Kowalevskaya exponents of these vector fields and relate the rational integrability of these fields to their Kowalevskaya exponents. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1318 / 1327
页数:10
相关论文
共 50 条
  • [21] Non-integrability of anisotropic quasi-homogeneous Hamiltonian systems
    Arribas, M
    Elipe, A
    Riaguas, A
    MECHANICS RESEARCH COMMUNICATIONS, 2003, 30 (03) : 209 - 216
  • [22] RATIONAL QUASI-HOMOGENEOUS SINGULARITIES
    FLENNER, H
    ARCHIV DER MATHEMATIK, 1981, 36 (01) : 35 - 44
  • [23] Centers of quasi-homogeneous polynomial differential equations of degree three
    Aziz, W.
    Llibre, J.
    Pantazi, C.
    ADVANCES IN MATHEMATICS, 2014, 254 : 233 - 250
  • [24] Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems
    Liang, Haihua
    Huang, Jianfeng
    Zhao, Yulin
    NONLINEAR DYNAMICS, 2014, 78 (03) : 1659 - 1681
  • [25] Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems
    Haihua Liang
    Jianfeng Huang
    Yulin Zhao
    Nonlinear Dynamics, 2014, 78 : 1659 - 1681
  • [26] Integrability of centers perturbed by quasi-homogeneous polynomials
    Chavarriga, J
    Garcia, I
    Gine, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) : 268 - 278
  • [27] INTEGRABILITY OF TWO-DIMENSIONAL HOMOGENEOUS POTENTIALS
    JOY, MP
    SABIR, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10): : 2291 - 2299
  • [28] A DIFFERENTIAL INTEGRABILITY CONDITION FOR TWO-DIMENSIONAL HAMILTONIAN SYSTEMS
    Mostafazadeh, Ali
    ACTA POLYTECHNICA, 2014, 54 (02) : 139 - 141
  • [29] PLANAR QUASI-HOMOGENEOUS POLYNOMIAL SYSTEMS WITH A GIVEN WEIGHT DEGREE
    Xiong, Yanqin
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 4015 - 4025
  • [30] The Kowalevskaya exponents and rational integrability of polynomial differential systems
    Liu, CJ
    Wu, H
    Yang, JZ
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03): : 234 - 245