TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:56
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
收藏
页码:1665 / 1685
页数:21
相关论文
共 14 条
  • [1] Alternative Markov properties for chain graphs
    Andersson, SA
    Madigan, D
    Perlman, MD
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (01) : 33 - 85
  • [2] [Anonymous], 1996, OXFORD STAT SCI SERI
  • [3] Cox D. A., 2007, IDEALS VARIETIES ALG, V3/e
  • [4] DI Y, 2009, 552 U WASH DEP STAT
  • [5] MOMENTS OF MINORS OF WISHART MATRICES
    Drton, Mathias
    Massam, Helene
    Olkin, Ingram
    [J]. ANNALS OF STATISTICS, 2008, 36 (05) : 2261 - 2283
  • [6] Loop-erased walks and total positivity
    Fomin, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) : 3563 - 3583
  • [7] BINOMIAL DETERMINANTS, PATHS, AND HOOK LENGTH FORMULAS
    GESSEL, I
    VIENNOT, G
    [J]. ADVANCES IN MATHEMATICS, 1985, 58 (03) : 300 - 321
  • [8] LINDSTROM B., 1973, Bull. Lond. Math. Soc., V5, P85, DOI [10.1112/blms/5.1.85, DOI 10.1112/BLMS/5.1.85]
  • [9] Richardson T, 2002, ANN STAT, V30, P962
  • [10] The TETRAD project: Constraint based aids to causal model specification
    Scheines, R
    Spirtes, P
    Glymour, C
    Meek, C
    Richardson, T
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 1998, 33 (01) : 65 - 117