Representations of quantum toroidal algebra Uq(sln+1,tor) (n≥2)

被引:31
作者
Miki, K [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
D O I
10.1063/1.1287436
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By the method of Chari and Pressley, representations of the quantum toroidal algebra U-q(sl(n+1,tor)) (n greater than or equal to 2) are studied. (C) 2000 American Institute of Physics. [S0022-2488(00)02509-3].
引用
收藏
页码:7079 / 7098
页数:20
相关论文
共 22 条
[1]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[2]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[3]   MINIMAL AFFINIZATIONS OF REPRESENTATIONS OF QUANTUM GROUPS - THE NONSIMPLY-LACED CASE [J].
CHARI, V ;
PRESSLEY, A .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (02) :99-114
[4]   Minimal affinizations of representations of quantum groups: The rank 2 case [J].
Chari, V .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (05) :873-911
[5]   Minimal affinizations of representations of quantum groups: The simply laced case [J].
Chari, V ;
Pressley, A .
JOURNAL OF ALGEBRA, 1996, 184 (01) :1-30
[6]  
CHARI V, 1995, LETT MATH PHYS, V30, P131
[7]  
Chari V., 1995, Representations of groups, V16, P59
[8]  
Chari V., 1990, L'Enseignement Mathematique, V36, P267
[9]  
Chari V., 1995, A Guide to Quantum Groups
[10]  
Drinfeld V. G., 1988, Soviet Math. Dokl, V296, P212