Ligands influence a carbon nanotube penetration through a lipid bilayer

被引:5
|
作者
Liu, Fei [1 ,2 ]
Wu, Dan [3 ]
Chen, Ken [3 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Coll Mech Engn, Chongqing 400044, Peoples R China
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Lipid bilayer; Carbon nanotube; Functionalized ligands; Biological membranes; Modeling and simulation; DISSIPATIVE PARTICLE DYNAMICS; MONOLAYER-PROTECTED NANOPARTICLES; BIOMEDICAL APPLICATIONS; BIO INTERFACE; SIMULATIONS; MEMBRANES; DELIVERY; NANOTECHNOLOGY; NANOMATERIALS; SURFACES;
D O I
10.1007/s11051-014-2692-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The interactions between nanomaterials and biological membranes are important for the safe use of nanomaterials. We explore the nano-bio interface by studying the penetration of a carbon nanotube (CNT) coated with ligands through a lipid bilayer. With a dissipative particle dynamics model, the mechanism of ligands influencing nano-bio interaction is analyzed. The CNTs with different ligands are tested. The simulation shows that the increase of the total number of ligand particles decreases the capability of a CNT penetrating through a membrane. For the CNTs with the same number of ligand particles, the arrangements of their ligands determine their behaviors. The asymmetrical pattern generates an upside down phenomenon, which requires more energy to get through the membrane; the uniform distribution penetrates through a membrane with less difficulty. Decreasing the stiffness, the length of ligands or preferring hydrophobic ligands increases the penetration capability of CNTs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Carbon Nanotube Penetration Through Fiberglass and Electret Respirator Filter and Nuclepore Filter Media: Experiments and Models
    Chen, Sheng-Chieh
    Wang, Jing
    Bahk, Yeon Kyoung
    Fissan, Heinz
    Pui, David Y. H.
    AEROSOL SCIENCE AND TECHNOLOGY, 2014, 48 (10) : 997 - 1008
  • [42] Photoactuation from a carbon nanotube-nafion bilayer composite
    Levitsky, Igor A.
    Kanelos, Peter T.
    Woodbury, Destiny S.
    Euler, William B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (19): : 9421 - 9425
  • [43] Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer
    Grushevskaya, Halina
    Timoshchenko, Andrey
    Lipnevich, Ihor
    NANOMATERIALS, 2023, 13 (03)
  • [44] Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity
    Wang, Shuo
    Guo, Hui
    Li, Yinfeng
    Li, Xuejin
    NANOSCALE, 2019, 11 (09) : 4025 - 4034
  • [45] Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures
    Ivalo M. Mladenov
    Peter A. Djondjorov
    Mariana Ts. Hadzhilazova
    Vassil M. Vassilev
    Communications in Theoretical Physics, 2013, 59 (02) : 213 - 228
  • [46] Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures
    Mladenov, Ivailo M.
    Djondjorov, Peter A.
    Hadzhilazova, Mariana Ts
    Vassilev, Vassil M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (02) : 213 - 228
  • [47] Carbon nanotube - Protamine hybrid: Evaluation of DNA cell penetration
    Caoduro, Cecile
    Kacem, Raoudha
    Boukari, Khaoula
    Picaud, Fabien
    Brachais, Claire-Helene
    Monchaud, David
    Borg, Christophe
    Boulandour, Hatem
    Gharbi, Tijani
    Delage-Mourroux, Regis
    Hervouet, Eric
    Pudlo, Marc
    CARBON, 2016, 96 : 742 - 752
  • [48] Permeability of nitric oxide through lipid bilayer membranes
    Subczynski, WK
    Lomnicka, M
    Hyde, JS
    FREE RADICAL RESEARCH, 1996, 24 (05) : 343 - 349
  • [49] Diffusion through Nanopores in Connected Lipid Bilayer Networks
    Valet, M.
    Pontani, L-L
    Voituriez, R.
    Wandersman, E.
    Prevost, A. M.
    PHYSICAL REVIEW LETTERS, 2019, 123 (08)
  • [50] A STEPWISE MECHANISM FOR THE PERMEATION OF PHLORETIN THROUGH A LIPID BILAYER
    VERKMAN, AS
    SOLOMON, AK
    JOURNAL OF GENERAL PHYSIOLOGY, 1982, 80 (04): : 557 - 581