Ambarzumyan Theorems for Dirac Operators

被引:3
作者
Yang, Chuan-fu [1 ]
Wang, Feng [1 ]
Huang, Zhen-you [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2021年 / 37卷 / 02期
基金
中国国家自然科学基金;
关键词
inverse spectral problem; Dirac operator; vectorial Sturm-Liouville operator; Ambarzumyan’ s theorem; INVERSE SPECTRAL PROBLEMS; EXTENSION;
D O I
10.1007/s10255-021-1007-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse eigenvalue problems for stationary Dirac systems with differentiable self-adjoint matrix potential. The theorem of Ambarzumyan for a Sturm-Liouville problem is extended to Dirac operators, which are subject to separation boundary conditions or periodic (semi-periodic) boundary conditions, and some analogs of Ambarzumyan's theorem are obtained. The proof is based on the existence and extremal properties of the smallest eigenvalue of corresponding vectorial Sturm-Liouville operators, which are the second power of Dirac operators.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 24 条