Dimension of non-conformal repellers: a survey

被引:23
作者
Chen, Jianyu [1 ]
Pesin, Yakov [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
SELF-AFFINE FRACTALS; HAUSDORFF DIMENSION; FULL DIMENSION; INVARIANT-MEASURES; SIMILAR SETS; CARPETS; SYSTEMS; MAPS;
D O I
10.1088/0951-7715/23/4/R01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a survey of recent results on the dimension of repellers for expanding maps and limit sets for iterated function systems. While the case of conformal repellers is well understood, the study of non-conformal repellers is in its early stages though a number of interesting phenomena have been discovered, some remarkable results obtained and several interesting examples constructed. We will describe contemporary state of the art in the area with emphasis on some new emerging ideas and open problems.
引用
收藏
页码:R93 / R114
页数:22
相关论文
共 33 条
[21]   MEASURE OF FULL DIMENSION FOR SOME NONCONFORMAL REPELLERS [J].
Luzia, Nuno .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :291-302
[22]   Subadditive pressure for triangular maps [J].
Manning, A. ;
Simon, K. .
NONLINEARITY, 2007, 20 (01) :133-149
[23]   THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS [J].
MCMULLEN, C .
NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) :1-9
[24]   Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus [J].
Olivier, Eric .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 :1503-1528
[25]   THE SELF-AFFINE CARPETS OF MCMULLEN AND BEDFORD HAVE INFINITE HAUSDORFF MEASURE [J].
PERES, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 116 :513-526
[26]  
Peres Y, 2000, PROG PROBAB, V46, P95
[27]   ON THE HAUSDORFF DIMENSION OF SOME FRACTAL SETS [J].
PRZYTYCKI, F ;
URBANSKI, M .
STUDIA MATHEMATICA, 1989, 93 (02) :155-186
[28]  
Ruelle D., 1982, Ergodic Theory Dynam. Syst, V2, P99, DOI [10.1017/S0143385700009603, DOI 10.1017/S0143385700009603]
[29]  
Solomyak B, 2004, P SYMP PURE MATH, V72, P207
[30]   Measure and dimension for some fractal families [J].
Solomyak, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :531-546