Numerical solution of quadratic eigenvalue problems with structure-preserving methods

被引:24
|
作者
Hwang, TM [1 ]
Lin, WW
Mehrmann, V
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2003年 / 24卷 / 04期
关键词
quadratic eigenvalue problems; skew-Hamiltonian/Hamiltonian pencils; invariant subspace; gyroscopic system; quadratic Jacobi-Davidson method; nonequivalence deflation technique;
D O I
10.1137/S106482750139220X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic systems. For this problem we first solve the eigenvalue problem for the undamped system using the structure-preserving method and then use the quadratic Jacobi-Davidson method as correction procedure. We also illustrate the properties of the new approach for several other application problems.
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 50 条
  • [41] Numerical methods for eigenvalue and control problems
    Mehrmann, V
    FRONTIERS IN NUMERICAL ANALYSIS, 2003, : 303 - 349
  • [42] Numerical solution of singular ODE eigenvalue problems in electronic structure computations
    Hammerling, Robert
    Koch, Othmar
    Simon, Christa
    Weinmueller, Ewa B.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) : 1557 - 1561
  • [43] Implicit computational solution of generalized quadratic eigenvalue problems
    Komzsik, L
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2001, 37 (10) : 799 - 810
  • [44] STRUCTURE-PRESERVING EXPONENTIAL RUNGE-KUTTA METHODS
    Bhatt, Ashish
    Moore, Brian E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A593 - A612
  • [45] Algebraic Analysis of Structure-preserving General Linear Methods
    Butcher, J. C.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [46] Numerical methods for the tridiagonal hyperbolic quadratic eigenvalue problem
    Plestenjak, Bor
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (04) : 1157 - 1172
  • [47] THE STRUCTURE-PRESERVING METHODS FOR THE DEGASPERIS-PROCESI EQUATION
    Zhang, Yuze
    Wang, Yushun
    Yang, Yanhong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 475 - 487
  • [48] GENERALIZED FINITE ELEMENT METHODS FOR QUADRATIC EIGENVALUE PROBLEMS
    Malqvist, Axel
    Peterseim, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 147 - 163
  • [49] New Numerical Algorithm for Deflation of Infinite and Zero Eigenvalues and Full Solution of Quadratic Eigenvalue Problems
    Drmac, Zlatko
    Glibic, Ivana Sain
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2020, 46 (04):
  • [50] Interpolatory projection methods for structure-preserving model reduction
    Beattie, Christopher
    Gugercin, Serkan
    SYSTEMS & CONTROL LETTERS, 2009, 58 (03) : 225 - 232