Numerical solution of quadratic eigenvalue problems with structure-preserving methods

被引:24
|
作者
Hwang, TM [1 ]
Lin, WW
Mehrmann, V
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2003年 / 24卷 / 04期
关键词
quadratic eigenvalue problems; skew-Hamiltonian/Hamiltonian pencils; invariant subspace; gyroscopic system; quadratic Jacobi-Davidson method; nonequivalence deflation technique;
D O I
10.1137/S106482750139220X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic systems. For this problem we first solve the eigenvalue problem for the undamped system using the structure-preserving method and then use the quadratic Jacobi-Davidson method as correction procedure. We also illustrate the properties of the new approach for several other application problems.
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 50 条
  • [31] An explicit structure-preserving numerical scheme for EPDiff
    Azencot, Omri
    Vantzos, Orestis
    Ben-Chen, Mirela
    COMPUTER GRAPHICS FORUM, 2018, 37 (05) : 107 - 119
  • [32] An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems
    Hammarling, Sven
    Munro, Christopher J.
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (03):
  • [33] Structure-preserving Arnoldi-type algorithm for solving eigenvalue problems in leaky surface wave propagation
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Wu, Chin-Tien
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 9947 - 9958
  • [34] Structure-Preserving Technique in the Block SS-Hankel Method for Solving Hermitian Generalized Eigenvalue Problems
    Imakura, Akira
    Futamura, Yasunori
    Sakurai, Tetsuya
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 600 - 611
  • [35] Structure-preserving sparsification methods for social networks
    Hamann, Michael
    Lindner, Gerd
    Meyerhenke, Henning
    Staudt, Christian L.
    Wagner, Dorothea
    SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01)
  • [36] Fast Solution of Induction Heating Problems by Structure-Preserving Nonlinear Model Order Reduction
    Codecasa, Lorenzo
    Alotto, Piergiorgio
    Moro, Federico
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [37] A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem
    Lyu, Xing-Long
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2022, 7 (01) : 3 - 19
  • [38] NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS
    SCHWARZ, HR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T504 - T512
  • [39] Numerical solution of linear eigenvalue problems
    Bosch, Jessica
    Greif, Chen
    GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 117 - 153
  • [40] A numerical method for quadratic eigenvalue problems of gyroscopic systems
    Qian, Jiang
    Lin, Wen-Wei
    JOURNAL OF SOUND AND VIBRATION, 2007, 306 (1-2) : 284 - 296