Numerical solution of quadratic eigenvalue problems with structure-preserving methods

被引:24
作者
Hwang, TM [1 ]
Lin, WW
Mehrmann, V
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
quadratic eigenvalue problems; skew-Hamiltonian/Hamiltonian pencils; invariant subspace; gyroscopic system; quadratic Jacobi-Davidson method; nonequivalence deflation technique;
D O I
10.1137/S106482750139220X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic systems. For this problem we first solve the eigenvalue problem for the undamped system using the structure-preserving method and then use the quadratic Jacobi-Davidson method as correction procedure. We also illustrate the properties of the new approach for several other application problems.
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 47 条
[31]  
Saad Y., 1992, NUMERICAL METHODS LA
[32]   VARIATIONAL PRINCIPLE FOR LINEAR, COUPLED FIELD PROBLEMS IN CONTINUUM MECHANICS [J].
SANDHU, RS ;
PISTER, KS .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1970, 8 (12) :989-&
[33]  
Schmitz H., 1993, NUMER METH PART D E, V9, P323
[34]  
Schwarz H. R., 1984, METHODE FINITEN ELEM
[35]   EVALUATION OF U-W AND U-PI FINITE-ELEMENT METHODS FOR THE DYNAMIC-RESPONSE OF SATURATED POROUS-MEDIA USING ONE-DIMENSIONAL MODELS [J].
SIMON, BR ;
WU, JSS ;
ZIENKIEWICZ, OC ;
PAUL, DK .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1986, 10 (05) :461-482
[36]  
SLEIJPEN G, 1996, SIAM NEWS, V29, P13
[37]  
Sleijpen GL., 1996, SIAM NEWS, V29, P8
[38]   Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems [J].
Sleijpen, GLG ;
Booten, AGL ;
Fokkema, DR ;
VanderVorst, HA .
BIT NUMERICAL MATHEMATICS, 1996, 36 (03) :595-633
[40]  
Stewart G., 1990, MATRIX PERTURBATION