Numerical solution of quadratic eigenvalue problems with structure-preserving methods

被引:24
|
作者
Hwang, TM [1 ]
Lin, WW
Mehrmann, V
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2003年 / 24卷 / 04期
关键词
quadratic eigenvalue problems; skew-Hamiltonian/Hamiltonian pencils; invariant subspace; gyroscopic system; quadratic Jacobi-Davidson method; nonequivalence deflation technique;
D O I
10.1137/S106482750139220X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic systems. For this problem we first solve the eigenvalue problem for the undamped system using the structure-preserving method and then use the quadratic Jacobi-Davidson method as correction procedure. We also illustrate the properties of the new approach for several other application problems.
引用
收藏
页码:1283 / 1302
页数:20
相关论文
共 50 条
  • [1] STRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC QUADRATIC EIGENVALUE PROBLEMS ARISING FROM VIBRATION OF FAST TRAINS
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Qian, Jiang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1566 - 1592
  • [2] SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM
    Guo, Chun-Hua
    Lin, Wen-Wei
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2784 - 2801
  • [3] A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems
    Li, Tie-Xiang
    Chu, Eric King-wah
    Lin, Wen-Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1733 - 1745
  • [4] A new structure-preserving method for quaternion Hermitian eigenvalue problems
    Jia, Zhigang
    Wei, Musheng
    Ling, Sitao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 12 - 24
  • [5] A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems
    Ma, Ru-Ru
    Jia, Zhi-Gang
    Bai, Zheng-Jian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) : 809 - 820
  • [6] AN ANALYSIS OF STRUCTURE PRESERVING NUMERICAL-METHODS FOR SYMPLECTIC EIGENVALUE PROBLEMS
    FLASCHKA, U
    MEHRMANN, V
    ZYWIETZ, D
    RAIRO-AUTOMATIQUE-PRODUCTIQUE INFORMATIQUE INDUSTRIELLE-AUTOMATIC CONTROL PRODUCTION SYSTEMS, 1991, 25 (02): : 165 - 190
  • [7] A symmetric structure-preserving FQR algorithm for linear response eigenvalue problems
    Li, Tiexiang
    Li, Ren-Cang
    Lin, Wen-Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 191 - 214
  • [8] A new structure-preserving method for dual quaternion Hermitian eigenvalue problems
    Ding, Wenxv
    Li, Ying
    Wei, Musheng
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [9] Structure-preserving numerical methods for the fractional Schrodinger equation
    Wang, Pengde
    Huang, Chengming
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 137 - 158
  • [10] Structure-Preserving Numerical Methods for Stochastic Poisson Systems
    Hong, Jialin
    Ruan, Jialin
    Sun, Liying
    Wang, Lijin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (03) : 802 - 830