Entropy production: evolution criteria, robustness and fractal dimension

被引:0
作者
Betancourt-Mar, J. A. [1 ]
Rodriguez-Ricard, M. [2 ]
Mansilla, R. [3 ]
Cocho, G. [4 ]
Nieto-Villar, J. M. [1 ,5 ,6 ]
机构
[1] Mexican Inst Complex Syst, Tamaulipas, Mexico
[2] Univ La Habana, Fac Matemat & Comp, Dept Ecuac Diferenciales, Havana 10400, Cuba
[3] Univ Nacl Autonoma Mexico, Ctr Invest Interdisciplinarias Ciencias & Humanid, Mexico City 04510, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Dept Sistemas Complejos, Inst Fis, Mexico City 04510, DF, Mexico
[5] Univ Havana, Fac Chem, MV Lomonosov Chem Div, Dept Chem Phys, Havana 10400, Cuba
[6] Univ Havana, Fac Phys, H Poincare Grp Complex Syst, Havana 10400, Cuba
关键词
Irreversible thermodynamics; complex systems; fractal dimension; CHAOS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was proved through Rossler model, where the funnel case is more robust tan spiral chaos, the entropy production per unit time is a Lyapunov's function on the space of the control system parameters. It was established the conjecture of entropy production fractal dimension. The current theoretical framework will hopefully provide a better understanding of the relationship between thermodynamics and nonlinear dynamics and contribute to unify theses through complex systems theory.
引用
收藏
页码:164 / 167
页数:4
相关论文
共 21 条
  • [1] THEORETICAL MODELS FOR CHRONOTHERAPY: PERIODIC PERTURBATIONS IN HYPERCHAOS
    Alberto Betancourt-Mar, Juvencio
    Alfonso Mendez-Guerrero, Victor
    Hernandez-Rodriguez, Carlos
    Manuel Nieto-Villar, Jose
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (03) : 553 - 560
  • [2] Andronov AA, 1966, Theory of Oscillators
  • [3] [Anonymous], 2000, Studies in nonlinearity
  • [4] [Anonymous], 1995, Thermodynamics of chaotic systems: an introduction
  • [5] HYPERCHAOS AND CHAOTIC HIERARCHY IN LOW-DIMENSIONAL CHEMICAL-SYSTEMS
    BAIER, G
    SAHLE, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) : 8907 - 8911
  • [6] Betancourt-Mar JA, 2007, MATH BIOSCI ENG, V4, P177
  • [7] THE DIMENSION OF CHAOTIC ATTRACTORS
    FARMER, JD
    OTT, E
    YORKE, JA
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) : 153 - 180
  • [8] Gaspard P, 2007, ADV CHEM PHYS, V135, P83
  • [9] Gear C.W., 1968, P IFIP C 68 ED 1968, V68, P187
  • [10] 2ND-LAW IRREVERSIBILITY AND PHASE-SPACE DIMENSIONALITY LOSS FROM TIME-REVERSIBLE NONEQUILIBRIUM STEADY-STATE LYAPUNOV SPECTRA
    HOOVER, WG
    POSCH, HA
    [J]. PHYSICAL REVIEW E, 1994, 49 (03): : 1913 - 1920