ATYPICAL CASE OF THE DIELECTRIC RELAXATION RESPONSES AND ITS FRACTIONAL KINETIC EQUATION

被引:19
|
作者
Stanislavsky, Aleksander [1 ,2 ]
Weron, Karina [3 ]
机构
[1] Natl Acad Sci Ukraine, Inst Radio Astron, 4 Chervonopraporna St, UA-61002 Kharkov, Ukraine
[2] Kharkov Natl Univ, Svobody Sq 4, UA-61022 Kharkov, Ukraine
[3] Wroclaw Univ Technol, Fac Fundamental Problems Technol, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
fractional calculus; Mittag-Leffler type functions; fractional ordinary and pseudo differential equations; dielectric susceptibility; fractional two-power relaxation; MITTAG-LEFFLER FUNCTIONS; POWER-LAW; DIFFUSION;
D O I
10.1515/fca-2016-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a probabilistic model of the microscopic scenario of dielectric relaxation relating to the atypical case of two-power-law responses. The surveyed approach extends the cluster model concept used for the description of the typical, Havriliak-Negami (HN) law. Within the proposed framework, all empirical two-power-law relaxation patterns may be derived. Their relaxation functions are expressed in terms of the three-parameter Mittag-Leffler function, and the kinetic equation takes the pseudodifferential form generalizing the Riemann-Louiville fractional calculus. This provides a clue to explain the universality observed in relaxation phenomena.
引用
收藏
页码:212 / 228
页数:17
相关论文
共 50 条
  • [21] ON GENERALIZATIONS OF THE DEBYE EQUATION FOR DIELECTRIC-RELAXATION
    RESTUCCIA, L
    KLUITENBERG, GA
    PHYSICA A, 1988, 154 (01): : 157 - 182
  • [22] A Fractional Complex Permittivity Model of Media with Dielectric Relaxation
    Ciancio, Armando
    Flora, Bruno Felice Filippo
    FRACTAL AND FRACTIONAL, 2017, 1 (01) : 1 - 11
  • [23] A new generalized fractional Maxwell model of dielectric relaxation
    Luo, Dan
    Chen, Hong-Shan
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (05) : 1998 - 2004
  • [24] FRACTIONAL DIFFUSION EQUATION AND RELAXATION IN COMPLEX VISCOELASTIC MATERIALS
    GIONA, M
    CERBELLI, S
    ROMAN, HE
    PHYSICA A, 1992, 191 (1-4): : 449 - 453
  • [25] ON EXISTENCE OF SOLUTION FOR FRACTIONAL ORDER OSCILLATION/RELAXATION EQUATION
    Balachandar, S. R.
    Balasubramanian, K.
    Venkatesh, S. G.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 119 - 125
  • [26] On Complete Monotonicity of Solution to the Fractional Relaxation Equation with thenth Level Fractional Derivative
    Luchko, Yuri
    MATHEMATICS, 2020, 8 (09)
  • [27] DIELECTRIC-RELAXATION OF ELECTROLYTE-SOLUTIONS - IS THERE REALLY A KINETIC DIELECTRIC DECREMENT
    CHANDRA, A
    WEI, DQ
    PATEY, GN
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (06): : 4959 - 4966
  • [28] DIELECTRIC RELAXATION AND ITS MATHEMATICAL TREATMENT
    SCHWEITZER, G
    SCHNITZLER, A
    ZEITSCHRIFT FUR ANGEWANDTE PHYSIK, 1970, 29 (03): : 201 - +
  • [29] Dielectric relaxation in cellulose and its derivatives
    Rachocki, A
    Markiewicz, E
    Tritt-Goc, J
    ACTA PHYSICA POLONICA A, 2005, 108 (01) : 137 - 145
  • [30] Global hypoelliptic estimates for fractional order kinetic equation
    Li, Wei-Xi
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) : 610 - 637