Learning matrix quantization and relevance learning based on Schatten-p-norms

被引:4
作者
Bohnsack, A. [1 ,2 ]
Domaschke, K. [2 ]
Kaden, M. [2 ,3 ]
Lange, M. [2 ,3 ]
Villmann, T. [2 ,3 ]
机构
[1] Staatliche Berufliche Oberschule Kaufbeuren, D-87600 Kaufbeuren, Germany
[2] Univ Appl Sci Mittweida, Computat Intelligence Grp, Tech Pl 17, D-09648 Mittweida, Germany
[3] Inst Computat Intelligence & Intelligente Datenan, D-09648 Mittweida, Germany
关键词
Learning vector quantization; Matrix data; Relevance learning;
D O I
10.1016/j.neucom.2015.12.109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an extension of the learning vector quantization approach to classify matrix data. Examples for those data are functional data depending on time and frequency. The resulting learning matrix quantization algorithm is similar to the vectorial approach but now based on matrix norms. We favor Schatten-p-norms as the generalization of l(p)-norms for vectors. Furthermore, relevance learning for those matrix data allows a greater structural flexibility compared to the vectorial counterpart. We identify different kinds of algebraic relevance weighting and discuss the respective mathematical properties according to the relevance learning paradigm. Exemplary applications accompany the theoretical investigations to demonstrate basic properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 51 条
  • [31] Lange Mandy, 2014, ESANN, P271
  • [32] Supervised Learning of Quantizer Codebooks by Information Loss Minimization
    Lazebnik, Svetlana
    Raginsky, Maxim
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (07) : 1294 - 1309
  • [33] A review on applications of wavelet transform techniques in chemical analysis: 1989-1997
    Leung, AKM
    Chau, FT
    Gao, JB
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 43 (1-2) : 165 - 184
  • [34] An adaptive image Euclidean distance
    Li, Jing
    Lu, Bao-Liang
    [J]. PATTERN RECOGNITION, 2009, 42 (03) : 349 - 357
  • [35] Distinctive image features from scale-invariant keypoints
    Lowe, DG
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) : 91 - 110
  • [36] Median variants of learning vector quantization for learning of dissimilarity data
    Nebel, David
    Hammer, Barbara
    Frohberg, Kathleen
    Villmann, Thomas
    [J]. NEUROCOMPUTING, 2015, 169 : 295 - 305
  • [37] A review of learning vector quantization classifiers
    Nova, David
    Estevez, Pablo A.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 25 (3-4) : 511 - 524
  • [38] COMBINING IMAGE COMPRESSION AND CLASSIFICATION USING VECTOR QUANTIZATION
    OEHLER, KL
    GRAY, RM
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (05) : 461 - 473
  • [39] Osowski S, 2000, 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, P1568, DOI 10.1109/ICOSP.2000.893399
  • [40] Pekalska E., 2006, DISSIMILARITY REPRES