Learning matrix quantization and relevance learning based on Schatten-p-norms

被引:4
作者
Bohnsack, A. [1 ,2 ]
Domaschke, K. [2 ]
Kaden, M. [2 ,3 ]
Lange, M. [2 ,3 ]
Villmann, T. [2 ,3 ]
机构
[1] Staatliche Berufliche Oberschule Kaufbeuren, D-87600 Kaufbeuren, Germany
[2] Univ Appl Sci Mittweida, Computat Intelligence Grp, Tech Pl 17, D-09648 Mittweida, Germany
[3] Inst Computat Intelligence & Intelligente Datenan, D-09648 Mittweida, Germany
关键词
Learning vector quantization; Matrix data; Relevance learning;
D O I
10.1016/j.neucom.2015.12.109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an extension of the learning vector quantization approach to classify matrix data. Examples for those data are functional data depending on time and frequency. The resulting learning matrix quantization algorithm is similar to the vectorial approach but now based on matrix norms. We favor Schatten-p-norms as the generalization of l(p)-norms for vectors. Furthermore, relevance learning for those matrix data allows a greater structural flexibility compared to the vectorial counterpart. We identify different kinds of algebraic relevance weighting and discuss the respective mathematical properties according to the relevance learning paradigm. Exemplary applications accompany the theoretical investigations to demonstrate basic properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 51 条
  • [1] Allen G., 2012, J AM STAT ASS THEORY, V109, P145
  • [2] [Anonymous], 2013, Matrix Analysis
  • [3] [Anonymous], 1986, TKKFA601 HELS U TECH
  • [4] [Anonymous], 2013, MACHINE LEARNING REP
  • [5] [Anonymous], 2013, Matrix Computations
  • [6] [Anonymous], 2008, Int. J. Inf. Syst. Sci.
  • [7] [Anonymous], 1997, SPRINGER SERIES INFO
  • [8] Learning Deep Architectures for AI
    Bengio, Yoshua
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01): : 1 - 127
  • [9] Biehl M, 2015, IEEE IJCNN
  • [10] Biehl M, 2009, STUD COMPUT INTELL, V247, P183