Density estimation of multivariate samples using Wasserstein distance

被引:3
作者
Luini, E. [1 ]
Arbenz, P. [2 ,3 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] SCOR Switzerland Ltd, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Nonparametric density estimation; Wasserstein distance; piecewise constant distribution; multivariate histogram; ASYMPTOTICS; UNIFORMITY;
D O I
10.1080/00949655.2019.1675661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Density estimation is a central topic in statistics and a fundamental task of machine learning. In this paper, we present an algorithm for approximating multivariate empirical densities with a piecewise constant distribution defined on a hyperrectangular-shaped partition of the domain. The piecewise constant distribution is constructed through a hierarchical bisection scheme, such that locally, the sample cannot be statistically distinguished from a uniform distribution. The Wasserstein distance has been used to measure the uniformity of the sample data points lying in each partition element. Since the resulting density estimator requires significantly less memory to be stored, it can be used in a situation where the information contained in a multivariate sample needs to be preserved, transferred or analysed.
引用
收藏
页码:181 / 210
页数:30
相关论文
共 41 条
  • [1] ABID BK, 2018, MACHINE LEARNING RES, V1505, P1512
  • [2] ON OPTIMAL MATCHINGS
    AJTAI, M
    KOMLOS, J
    TUSNADY, G
    [J]. COMBINATORICA, 1984, 4 (04) : 259 - 264
  • [3] ALTSCHULER J, 2017, P NIPS
  • [4] [Anonymous], 2010, INT ENCY ED, DOI DOI 10.1016/B978-0-08-044894-7.01333-6
  • [5] [Anonymous], 2012, Society of Industrial and Applied Mathematics
  • [6] Piecewise linear approximation of empirical distributions under a Wasserstein distance constraint
    Arbenz, Philipp
    Guevara-Alarcon, William
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (16) : 3193 - 3216
  • [7] BASSETTI F, 2018, ARXIV180400445
  • [8] Testing multivariate uniformity:: the distance-to-boundary method
    Berrendero, Jose R.
    Cuevas, Antonio
    Vazquez-Grande, Francisco
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (04): : 693 - 707
  • [9] SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP
    BICKEL, PJ
    FREEDMAN, DA
    [J]. ANNALS OF STATISTICS, 1981, 9 (06) : 1196 - 1217
  • [10] Geodesic PCA in the Wasserstein space by convex PCA
    Bigot, Jeremie
    Gouet, Raul
    Klein, Thierry
    Lopez, Alfredo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 1 - 26