Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization

被引:53
作者
Giannini, Samuele [1 ,2 ,6 ]
Peng, Wei-Tao [1 ,2 ]
Cupellini, Lorenzo [3 ]
Padula, Daniele [4 ]
Carof, Antoine [5 ]
Blumberger, Jochen [1 ,2 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] UCL, Thomas Young Ctr, London WC1E 6BT, England
[3] Univ Pisa, Dipartimento Chim & Chim Ind, Via G Moruzzi 13, I-56124 Pisa, Italy
[4] Univ Siena, Dipartimento Biotecnol Chim & Farm, Via A Moro 2, I-53100 Siena, Italy
[5] Univ Lorraine, CNRS, Lab Phys & Chim Theor, UMR 7019, BP 239, F-54506 Vandoeuvre Les Nancy 54506, France
[6] Univ Mons, Lab Chem Novel Mat, Pl Parc 20, B-7000 Mons, Belgium
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
ENERGY-TRANSFER; NONADIABATIC DYNAMICS; CRYSTAL-STRUCTURE; CHARGE-TRANSPORT; DIFFUSION; ANTHRACENE; LIGHT; ABSORPTION; ANISOTROPY; COUPLINGS;
D O I
10.1038/s41467-022-30308-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrodinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials. Improving exciton diffusion in molecular materials is an important goal in materials science. Here, Giannini et al. show that transient quantum delocalization of the excitonic wavefunction underpins high diffusivity leading to a set of design rules.
引用
收藏
页数:13
相关论文
共 73 条
  • [1] Regimes of Exciton Transport in Molecular Crystals in the Presence of Dynamic Disorder
    Arago, Juan
    Troisi, Alessandro
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (14) : 2316 - 2325
  • [2] Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells
    Azzouzi, Mohammed
    Kirchartz, Thomas
    Nelson, Jenny
    [J]. TRENDS IN CHEMISTRY, 2019, 1 (01): : 49 - 62
  • [3] An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping
    Bai, Xin
    Qiu, Jing
    Wang, Linjun
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (10)
  • [4] Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials
    Balzer, Daniel
    Smolders, Thijs J. A. M.
    Blyth, David
    Hood, Samantha N.
    Kassal, Ivan
    [J]. CHEMICAL SCIENCE, 2021, 12 (06) : 2276 - 2285
  • [5] Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?
    Bondanza, Mattia
    Nottoli, Michele
    Cupellini, Lorenzo
    Lipparini, Filippo
    Mennucci, Benedetta
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (26) : 14433 - 14448
  • [6] How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm
    Carof, Antoine
    Giannini, Samuele
    Blumberger, Jochen
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (48) : 26368 - 26386
  • [7] Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping
    Carof, Antoine
    Giannini, Samuele
    Blumberger, Jochen
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (21)
  • [8] Case DA., 2008, AMBER 10 University of California
  • [9] Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
    Chai, Jeng-Da
    Head-Gordon, Martin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) : 6615 - 6620
  • [10] Single-Junction Organic Photovoltaic Cell with 19% Efficiency
    Cui, Yong
    Xu, Ye
    Yao, Huifeng
    Bi, Pengqing
    Hong, Ling
    Zhang, Jianqi
    Zu, Yunfei
    Zhang, Tao
    Qin, Jinzhao
    Ren, Junzhen
    Chen, Zhihao
    He, Chang
    Hao, Xiaotao
    Wei, Zhixiang
    Hou, Jianhui
    [J]. ADVANCED MATERIALS, 2021, 33 (41)