Phenology-based classification of Sentinel-2 data to detect coastal mangroves

被引:6
|
作者
Mahmud, Sultan [1 ]
Redowan, Mohammad [1 ]
Ahmed, Romel [1 ]
Khan, Asif Alvee [1 ]
Rahman, Md Mokshedur [1 ]
机构
[1] Shahjalal Univ Sci & Technol SUST, Dept Forestry & Environm Sci, Sylhet, Bangladesh
关键词
Mangrove; Sentinel-2; random forest; image classification; vegetation index; LAND-SURFACE PHENOLOGY; DIFFERENCE WATER INDEX; BLUE CARBON EMISSIONS; CLIMATE-CHANGE; TIME-SERIES; VEGETATION INDEXES; RANDOM FOREST; 8; OLI; NDVI; MODIS;
D O I
10.1080/10106049.2022.2087754
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Precise categorization of mangrove forests with medium spatial resolution satellite data is challenging and occasionally yields mixed outcomes. The available methods to estimate mangrove vegetation cover using moderately high-resolution images lack differentiation between mangrove and homestead vegetation. Mangrove vegetation displays a range of responses across the phenological cycle at different wavelengths of an optical sensor. By taking advantage of this principle, the study applied some mangrove and non-mangrove VIs as predictor variables sourced from monthly Sentinel-2 data. These variables were grouped by individual VIs and fed into the random forest algorithm to derive phenology-based classification. A suitable month for thresholding mangroves across different VIs was also ascertained. Results indicated that phenology-based classification with three classes was more accurate (95% overall accuracy) than threshold-based or WorldCover v100 classifications. MI and MVI layers from December image performed better in discerning mangroves. Findings have important implications in separating mangroves from other coastal vegetations.
引用
收藏
页码:14335 / 14354
页数:20
相关论文
共 50 条
  • [31] A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam
    Nguyen-Thanh Son
    Chen, Chi-Farn
    Chen, Cheng-Ru
    Huynh-Ngoc Duc
    Chang, Ly-Yu
    REMOTE SENSING, 2014, 6 (01) : 135 - 156
  • [32] Phenology-based sample generation for supervised crop type classification
    Belgiu, Mariana
    Bijker, Wietske
    Csillik, Ovidiu
    Stein, Alfred
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 95
  • [33] A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland
    Karami, Mojtaba
    Westergaard-Nielsen, Andreas
    Normand, Signe
    Treier, Urs A.
    Elberling, Bo
    Hansen, Birger U.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 : 518 - 529
  • [34] Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    REMOTE SENSING, 2020, 12 (24) : 1 - 21
  • [35] Reliable Crops Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images
    Hejmanowska, Beata
    Kramarczyk, Piotr
    Glowienka, Ewa
    Mikrut, Slawomir
    REMOTE SENSING, 2021, 13 (16)
  • [36] Sentinel-2 image based smallholder crops classification and accuracy assessment by UAV data
    Maolan, Kadierye
    Rusuli, Yusufujiang
    XuHui, Zhang
    Kuluwan, Yimuran
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [37] Crop classification in Google Earth Engine: leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches
    Vizzari, Marco
    Lesti, Giacomo
    Acharki, Siham
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [38] Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve
    Lechner, Michael
    Dostalova, Alena
    Hollaus, Markus
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2022, 14 (11)
  • [39] Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [40] Characterisation of Two Vineyards in Mexico Based on Sentinel-2 and Meteorological Data
    del Rio, Maria S.
    Cicuendez, Victor
    Yague, Carlos
    REMOTE SENSING, 2024, 16 (14)