The fermion doubling problem and noncommutative geometry

被引:100
作者
Balachandran, AP [1 ]
Govindarajan, TR
Ydri, B
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
D O I
10.1142/S0217732300001389
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a resolution for the fermion doubling problem in discrete field theories based on the fuzzy sphere and its Cartesian products. Its relation to the Ginsparg-Wilson approach is also clarified.
引用
收藏
页码:1279 / 1286
页数:8
相关论文
共 23 条
  • [1] Monopoles and solitons in fuzzy physics
    Baez, S
    Balachandran, AP
    Vaidya, S
    Ydri, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) : 787 - 798
  • [2] BALACHANDRAN AP, SU4240712
  • [3] BALACHANDRAN AP, SU4210701
  • [4] Chirality and dirac operator on noncommutative sphere
    CarowWatamura, U
    Watamura, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (02) : 365 - 382
  • [5] CAROWWATAMURA U, HEPTH9801195
  • [6] Connes A., 1994, NONCOMMUTATIVE GEOME
  • [7] Coquereaux R., 1989, Journal of Geometry and Physics, V6, P425, DOI 10.1016/0393-0440(89)90013-2
  • [8] Supersymmetric quantum theory and non-commutative geometry
    Fröhlich, J
    Grandjean, O
    Recknagel, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) : 119 - 184
  • [9] A REMNANT OF CHIRAL SYMMETRY ON THE LATTICE
    GINSPARG, PH
    WILSON, KG
    [J]. PHYSICAL REVIEW D, 1982, 25 (10): : 2649 - 2657
  • [10] Noncommutative geometry and the regularization problem of 4D quantum field theory
    Grosse, H
    Strohmaier, A
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (02) : 163 - 179