Vertex-disjoint rainbow cycles in edge-colored graphs

被引:2
作者
Li, Luyi
Li, Xueliang [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-colored graph; Color-neighborhood; Vertex-disjoint; Rainbow cycle; TRIANGLES; CONJECTURE;
D O I
10.1016/j.disc.2022.112878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an edge-colored graph of order n. The color-neighborhood of a vertex u of G is the set of colors of the edges incident with u in G, denoted by CNG(u), or CN(u) for short. A subgraph F of G is called rainbow if any two edges of F have distinct colors. In this paper, we first give a sufficient condition for the existence of rainbow cycles by using color-neighborhood unions of pairs of vertices in G. In 2019, Fujita et al. showed that G contains k vertex-disjoint rainbow cycles if |CN(x) boolean OR & nbsp;CN(y)|& nbsp;>=& nbsp;n/2 + 64k + 1 for any two vertices x, y of G. We obtain a result that G contains k vertex-disjoint rainbow cycles if |CN(x) boolean OR & nbsp;CN(y)|& nbsp;>=& nbsp;n/2 + 18k + 1 for any two vertices x, y of G. Furthermore, we give better bounds for k = 2, 3. Finally, we show that G contains two vertex-disjoint rainbow cycles of different lengths if |CN(x) boolean OR CN(y)| >=& nbsp;2n/3 + 6 for every pair of vertices x, y of G. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 21 条
  • [1] Rainbow triangles and the Caccetta-Haggkvist conjecture
    Aharoni, Ron
    DeVos, Matthew
    Holzman, Ron
    [J]. JOURNAL OF GRAPH THEORY, 2019, 92 (04) : 347 - 360
  • [2] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [3] Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
  • [4] CYCLES IN DIGRAPHS - A SURVEY
    BERMOND, JC
    THOMASSEN, C
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (01) : 1 - 43
  • [5] Bondy J. A, 2008, GTM, V244
  • [6] Broersma H, 2005, AUSTRALAS J COMB, V31, P299
  • [7] An improved bound for disjoint directed cycles
    Bucic, Matija
    [J]. DISCRETE MATHEMATICS, 2018, 341 (08) : 2231 - 2236
  • [8] Caccetta L., 1978, Utilitas Math., P181
  • [9] Rainbow cycles in edge-colored graphs
    Cada, Roman
    Kaneko, Atsushi
    Ryjacek, Zdenek
    Yoshimoto, Kiyoshi
    [J]. DISCRETE MATHEMATICS, 2016, 339 (04) : 1387 - 1392
  • [10] On odd rainbow cycles in edge-colored graphs
    Czygrinow, Andrzej
    Molla, Theodore
    Nagle, Brendan
    Oursler, Roy
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94