Existence and blow-up for a degenerate parabolic equation with nonlocal source

被引:12
作者
Li, FC [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
degenerate parabolic equation; nonlocal source; global existence; blow-up; blow-up rate;
D O I
10.1016/S0362-546X(02)00119-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the positive solution of nonlinear degenerate equation u(t) = u(p)(Deltau+au integral(Omega)u(q) dx) with Dirichlet boundary condition. Conditions on the existence of global and blow-up solution are given. Furthermore, it is proved that there exist two positive constants C-1, C-2 such that C-1(T* - t)(-1/(p+q)) less than or equal to max(xis an element of(Ω) over bar) u(x, t) less than or equal to C-2(T* - t)(-1/(p+q)). (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 12 条
[1]  
ALLEN LJS, 1983, B MATH BIOL, V45, P209, DOI 10.1016/S0092-8240(83)80052-4
[2]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[3]  
FRIEDMAN A, 1986, ARCH RATION MECH AN, V96, P55
[4]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[5]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[6]  
GALAKTIONOV VA, 1985, DIFF EQUAT+, V21, P751
[7]  
GALAKTIONOV VA, 1985, DIFF URAVN, V21, P15
[8]   BLOWING-UP OF SOLUTION FOR A NONLOCAL REACTION-DIFFUSION PROBLEM IN COMBUSTION THEORY [J].
PAO, CV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) :591-600
[9]   Blow-up in nonlocal reaction-diffusion equations [J].
Souplet, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1301-1334
[10]  
Wang MX, 1996, MATH METHOD APPL SCI, V19, P1141, DOI 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO