The impact of fourth-order exchange interactions on the thermal variation of the order parameter

被引:8
作者
Köbler, U
Hoser, A
Fischer, K
Beyss, M
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
[3] Rhein Westfal TH Aachen, Inst Kristallog, D-52056 Aachen, Germany
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2002年 / 74卷 / Suppl 1期
关键词
D O I
10.1007/s003390201858
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal decrease of the order parameter can empirically be described by a single T-epsilon power law with an exponent epsilon which depends on the dimensionality of the magnetic interactions and on whether the spin quantum number is integral or half-integral. We present experimental examples in which the order parameter shows a crossover between different T-epsilon power laws as a function of temperature. This indicates that the magnetic interactions can change their dimensionality as a function of temperature.
引用
收藏
页码:S604 / S606
页数:3
相关论文
共 50 条
[41]   Ergodicity and fourth-order spectral moments [J].
Picinbono, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) :1273-1276
[42]   A fourth-order nonlinear difference equation [J].
Anderson, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (01) :161-169
[43]   FOURTH-ORDER OPERATORS WITH UNBOUNDED COEFFICIENTS [J].
Gregorio, Federica ;
Spina, Chiara ;
Tacelli, Cristian .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (04) :463-479
[44]   Dirichlet Problem for a fourth-order equation [J].
E. A. Utkina .
Differential Equations, 2011, 47 :599-603
[45]   On a fourth-order nonlinear Helmholtz equation [J].
Bonheure, Denis ;
Casteras, Jean-Baptiste ;
Mandel, Rainer .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (03) :831-852
[46]   FOURTH-ORDER BANDPASS FILTERING. [J].
Lacanette, Kerry .
New Electronics, 1986, 19 (24)
[47]   Horizon thermodynamics in fourth-order gravity [J].
Ma, Meng-Sen .
PHYSICS LETTERS B, 2017, 766 :351-356
[48]   Integrable fourth-order difference equations [J].
Maheswari, C. Uma ;
Sahadevan, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (23)
[49]   On first integrals of a fourth-order equation [J].
Martynov, IP ;
Mozhdzher, GT .
DIFFERENTIAL EQUATIONS, 2004, 40 (12) :1785-1789
[50]   Dirichlet Problem for a fourth-order equation [J].
Utkina, E. A. .
DIFFERENTIAL EQUATIONS, 2011, 47 (04) :599-603