Molecular Regulation of Arbuscular Mycorrhizal Symbiosis

被引:33
|
作者
Ho-Plagaro, Tania [1 ]
Manuel Garcia-Garrido, Jose [1 ]
机构
[1] CSIC, Dept Soil Microbiol & Symbiot Syst, Zaidin Expt Stn EEZ, Granada 18008, Spain
关键词
AM symbiosis; signal; regulators; nutrients; transcriptional regulation; autoregulation; SPLIT-ROOT SYSTEMS; F-BOX PROTEIN; MEDICAGO-TRUNCATULA; TRANSCRIPTION FACTOR; GENE-EXPRESSION; STRIGOLACTONE BIOSYNTHESIS; PHOSPHATE TRANSPORTER; PLANT; COLONIZATION; FUNGI;
D O I
10.3390/ijms23115960
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant-microorganism interactions at the rhizosphere level have a major impact on plant growth and plant tolerance and/or resistance to biotic and abiotic stresses. Of particular importance for forestry and agricultural systems is the cooperative and mutualistic interaction between plant roots and arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycotina, since about 80% of terrestrial plant species can form AM symbiosis. The interaction is tightly regulated by both partners at the cellular, molecular and genetic levels, and it is highly dependent on environmental and biological variables. Recent studies have shown how fungal signals and their corresponding host plant receptor-mediated signalling regulate AM symbiosis. Host-generated symbiotic responses have been characterized and the molecular mechanisms enabling the regulation of fungal colonization and symbiosis functionality have been investigated. This review summarizes these and other recent relevant findings focusing on the molecular players and the signalling that regulate AM symbiosis. Future progress and knowledge about the underlying mechanisms for AM symbiosis regulation will be useful to facilitate agro-biotechnological procedures to improve AM colonization and/or efficiency.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Independent regulation of strigolactones and blumenols during arbuscular mycorrhizal symbiosis in rice
    Servante, Emily K.
    Halitschke, Rayko
    Rocha, Catarina
    Baldwin, Ian T.
    Paszkowski, Uta
    PLANT JOURNAL, 2024, 119 (03): : 1289 - 1298
  • [22] Cellular programs for arbuscular mycorrhizal symbiosis
    Harrison, Maria J.
    CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (06) : 691 - 698
  • [23] The arbuscular mycorrhizal symbiosis: An underground association
    Harrison, MJ
    TRENDS IN PLANT SCIENCE, 1997, 2 (02) : 54 - 60
  • [24] Sugar transport in arbuscular mycorrhizal symbiosis
    Sun, Shubin
    Xu, Guohua
    CANADIAN JOURNAL OF PLANT SCIENCE, 2009, 89 (02) : 257 - 263
  • [25] Nitrogen transfer in the arbuscular mycorrhizal symbiosis
    Manjula Govindarajulu
    Philip E. Pfeffer
    Hairu Jin
    Jehad Abubaker
    David D. Douds
    James W. Allen
    Heike Bücking
    Peter J. Lammers
    Yair Shachar-Hill
    Nature, 2005, 435 : 819 - 823
  • [26] Leaf metabolome in arbuscular mycorrhizal symbiosis
    Schweiger, Rabea
    Mueller, Caroline
    CURRENT OPINION IN PLANT BIOLOGY, 2015, 26 : 120 - 126
  • [27] Functional complementarity in the arbuscular mycorrhizal symbiosis
    Koide, RT
    NEW PHYTOLOGIST, 2000, 147 (02) : 233 - 235
  • [28] SNARE Complexity in Arbuscular Mycorrhizal Symbiosis
    Huisman, Rik
    Hontelez, Jan
    Bisseling, Ton
    Limpens, Erik
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [29] Nitrogen transfer in the arbuscular mycorrhizal symbiosis
    Govindarajulu, M
    Pfeffer, PE
    Jin, HR
    Abubaker, J
    Douds, DD
    Allen, JW
    Bücking, H
    Lammers, PJ
    Shachar-Hill, Y
    NATURE, 2005, 435 (7043) : 819 - 823
  • [30] NADPH oxidases in the arbuscular mycorrhizal symbiosis
    Belmondo, Simone
    Calcagno, Cristina
    Genre, Andrea
    Puppo, Alain
    Pauly, Nicolas
    Lanfranco, Luisa
    PLANT SIGNALING & BEHAVIOR, 2016, 11 (04)