Random Search Methods for the Solution of a Stackelberg Game of Resource Allocation

被引:0
作者
Belyaysky, Grigory I. [1 ]
Danilova, Natalya V. [1 ]
机构
[1] Southern Fed Univ, II Vorovich Inst Math Mech & Comp Sci, 8a Milchakova, Rostov Na Donu, Russia
来源
CONTRIBUTIONS TO GAME THEORY AND MANAGEMENT, VOL XII | 2019年 / 12卷
基金
俄罗斯科学基金会;
关键词
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider a dynamic Stackelberg game on a finite time interval. The game is reduced to a problem of infinite-dimensional optimization with two additional constraints. Two finite-dimensional approximations of the problem are defined. They are solved by two numerical algorithms which do not require calculation of the gradient of the payoff function. The first algorithm is an algorithm of simulated annealing with a uniform partition of the interval. The second algorithm uses a piecewise-constant approximation of the solution with a choice of the interval partition. Two illustrative examples connected with a resource allocation problem are considered. The numerical results are given and compared.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 13 条
  • [1] [Anonymous], 1986, NONANTAGONISTIC GAME
  • [2] [Anonymous], 2015, FDN TRENDS OPTIMIZAT
  • [3] Basar T., 1998, Dynamic Noncooperative Game Theory
  • [4] [Белявский Григорий Исаакович Beliavsky Grigory I.], 2018, [Математическая теория игр и ее приложения, Matematicheskaya teoriya igr i ee prilozheniya], V10, P5
  • [5] A Markovian Mechanism of Proportional Resource Allocation in the Incentive Model as a Dynamic Stochastic Inverse Stackelberg Game
    Belyavsky, Grigory
    Danilova, Natalya
    Ougolnitsky, Guennady
    [J]. MATHEMATICS, 2018, 6 (08):
  • [6] [Белявский Григорий Исаакович Belyavsky Grigory I.], 2016, [Математическая теория игр и ее приложения, Matematicheskaya teoriya igr i ee prilozheniya], V8, P14
  • [7] On the Efficiency of the Proportional Allocation Mechanism for Divisible Resources
    Christodoulou, George
    Sgouritsa, Alkmini
    Tang, Bo
    [J]. ALGORITHMIC GAME THEORY, SAGT 2015, 2015, 9347 : 165 - 177
  • [8] Dynamic Models of Conflicts. III. Hierarchical Games
    Gorelov, M. A.
    Kononenko, A. F.
    [J]. AUTOMATION AND REMOTE CONTROL, 2015, 76 (02) : 264 - 277
  • [9] Jones M.Tim., 2008, ARTIF INTELL
  • [10] Kononenko A. F, 1980, USSR COMP MATH MATH, P13