Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial

被引:3
作者
Maeno, Toshiaki [1 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Sakyo Ku, Kyoto 6068501, Japan
关键词
Schur-Weyl duality; Specht polynomial; Q-ANALOG; ALGEBRAS;
D O I
10.1080/00927870601142371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the Schur-Weyl duality for a polynomial representation of the quantum group and the Hecke algebra of type A from a viewpoint of a q-analog of the strong Lefschetz property. A q-deformation of the Specht polynomial appears as a constituent of bases for irreducible components.
引用
收藏
页码:1307 / 1321
页数:15
相关论文
共 39 条
[21]   Higher representation theory and quantum affine Schur-Weyl duality [J].
Kang, Seok-Jin .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, :179-201
[22]   ON THE PARTITION APPROACH TO SCHUR-WEYL DUALITY AND FREE QUANTUM GROUPS [J].
Freslon, Amaury .
TRANSFORMATION GROUPS, 2017, 22 (03) :707-751
[23]   A geometric Schur-Weyl duality for quotients of affine Hecke algebras [J].
Pouchin, G. .
JOURNAL OF ALGEBRA, 2009, 321 (01) :230-247
[24]   SCHUR-WEYL DUALITY FOR DELIGNE CATEGORIES II: THE LIMIT CASE [J].
Aizenbud, Inna Entova .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 285 (01) :185-224
[25]   Schur-Weyl duality and the heat kernel measure on the unitary group [J].
Levy, Thierry .
ADVANCES IN MATHEMATICS, 2008, 218 (02) :537-575
[26]   APPLICATION OF THE SCHUR-WEYL DUALITY IN THE ONE-DIMENSIONAL HUBBARD MODEL [J].
Jakubczyk, Dorota .
REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (02) :293-304
[27]   Schur-Weyl quasi-duality and (co)triangular Hopf quasigroups [J].
Shi, Guodong ;
Wang, Shuanhong .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)
[28]   New Turaev Braided Group Categories and Group Schur-Weyl Duality [J].
Wang, Shuanhong .
APPLIED CATEGORICAL STRUCTURES, 2013, 21 (02) :141-166
[30]   An analogue of Schur-Weyl duality for the unitary group of a II1-factor [J].
Nessonov, N. I. .
SBORNIK MATHEMATICS, 2019, 210 (03) :447-472